
 
 

 

 

I. INTRODUCTION 

 

Abstract— A genetic algorithm (GA) presents an excellent 
method for controller parameter tuning. In our work, we 
evolved the heading as well as the altitude controller for a small 
lightweight helicopter. We use the real flying robot to evaluate 
the GA’s individuals rather than an artificially consistent 
simulator. By doing so we avoid the “reality gap”, taking the 
controller from the simulator to the real world. In this paper we 
analyze the evolutionary aspects of this technique and discuss 
the issues that need to be considered for it to perform well and 
result in robust controllers. 

he demand for autonomous helicopters from industry, 
military and in the civil sector has been growing rapidly 

[1]. One reason for this is the fact that helicopters are 
versatile in their maneuverability. Unfortunately, this also 
makes the platform very difficult to control. Therefore, much 
research is done in this area, often with rather large 
helicopters with a rotor span of more than a meter [2], up to 
rotor spans of over 3 meters [3]. These large helicopters 
present an obvious safety risk and also emit fumes, are loud, 
and test set-ups and experiments are complex. In our work, 
we use a very small and lightweight helicopter. This platform 
can be used indoors, is low cost, less of a safety risk, and 
very flexible in its application. We will refer to this platform 
as Flyper – flying performing robot – as this is its name in 
various projects. 

In our work we present ongoing research in achieving 
stable and robust control for this indoor helicopter. We 
applied a genetic algorithm (GA) to find PID control 
parameters of the heading as well as the altitude controllers 
running on the embedded system. Instead of using an 
artificially consistent simulator we used the actual robot to 
evaluate the control parameters’ fitness. In this paper we 
present and discuss our results from the analysis of executing 
GA using real systems to evaluate the fitness, and their 
relevance in creating robust controllers. 

We will use results presented elsewhere in combination 
with some new results presented in this paper, and perform 
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an analysis on the critical issues we have identified, mainly: 
the measurement of fitness, performance of the evolution 
process, and the robustness vs. accuracy of the final 
controller. 

The remainder of this paper is organized as follows. In 
section II we provide an overview of related work in terms of 
GA tuned controllers and execution of GA in real systems. In 
section III we will present and discuss the structure of the 
GA we used for our experiments and in section IV the setup 
to execute the fitness function on the real platform (Flyper). 
In section V we analyze the results and section VI concludes 
the paper and suggests further work. 

II. BACKGROUND 
First, let us provide a succinct introduction to the platform 

we have used to experiment so that it can be seen in the 
context of this paper. The autonomous helicopter is based on 
a Twister Bell 47 small indoor model helicopter. It is a 
coaxial rotor helicopter with twin counter-rotating rotors (it 
does not have a tail rotor) with 340 mm span, driven by two 
motors, and uses two servos to control the rotor blades' plane 
angles. The weight of the helicopter in its original state is 
approximately 210 grams without battery and it can lift up to 
120 grams. This helicopter has six degrees of freedom 
(DOF) controlled by four inputs. It can fly for approximately 
10 minutes with its standard battery. Figure 1 shows the 
helicopter diagram and its 6 degrees of freedom. 

 
 

 
Fig. 1.  Diagram showing the six degrees of freedom of the helicopter 

used in this paper. 
 
The controller deals with the four inputs to this system: 

two position values for the actuators that control the plane of 
the rotors, and two power values for the motors that drive 
each rotor. The actuators that control the rotors’ plane, 
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directly affect the pitch and roll degrees of freedom, which in 
turn affect the x, y and z positions. The rotor driving motors 
affect the y position in terms of their total combined power, 
and the yaw in terms of their difference. This shows the 
complexity of the control process for this particular platform 
in which some DOFs are controlled directly (y) and others 
indirectly (yaw) relative to the control actions, in addition to 
the fact that most DOFs are inter-dependable (roll and pitch 
with x, y and z). 

The original radio controlled system has been replaced by 
an onboard single chip embedded computer. All the control 
programs run in this onboard computer, which can 
communicate with a desktop computer via Bluetooth for 
telemetry purposes. 

A. Control Architecture 
Computational intelligence methods have been applied 

and well studied in controlling unmanned aerial vehicles 
(UAV) capable of vertical take-off and landing (VTOL) [4, 
5, 6, 7]. Others have shown that traditional control 
techniques, such as proportional-integral-derivative (PID) 
controllers, work well in VTOL control [8, 9, 10]. 

Kadmiry and Driankov describe a TSK-type fuzzy system 
to control the altitude and attitude of a small size, unmanned 
helicopter [4]. They use a mathematical model obtained from 
an existing platform to model the TSK fuzzy system and 
consequent parameters. It is stated that the large class of non-
linear plants can well be represented by the TSK models 
with only minor changes. On the other hand, the formal 
system identification can be very difficult for a complex 
system such as a helicopter. Using a PID control technique, 
only a few certain gain and border parameters need to be 
identified. 

Puntunan and Parnichkun introduce a heading direction 
and floating height controller for a single rotor helicopter 
[10]. The control system uses a proportional plus derivative 
controller (PD) to maintain the helicopter’s heading and 
height, while a human pilot controls the horizontal 
movements remotely. Puntunan and Parnichkun present test 
results that confirm stable controlling capability with a 
relative small margin of error. 

Sanchez, Becerra, Velez present in [8] an unmanned 
helicopter control system combining a Mamdani type fuzzy 
logic controller [11] with PID controllers. The Fuzzy 
Inference System (FIS) controls the translational movement 
while the PID controllers handle the altitude and attitude of 
the helicopter. The system was tested via simulation for 
hovering and slow velocities which showed good 
performance. 

Saripalli, Montgomery, and Sukhatme introduce an 
autonomous helicopter which uses differential GPS, an 
inertial measurement unit (IMU), and a sonar sensor to 
determine the helicopter’s position and attitude [9]. Their 
system is based on PI controllers. Seven test flights confirm 
the successful control and landing of the helicopter. This 

work shows that PI controllers work well and the integral 
control part is very useful in helicopter control. 

B. Evolving Controllers 
Identifying and tuning control parameters for such 

vehicles can be a challenging task. Fleming and Purshouse 
present in [12] a survey of EC in control systems 
engineering. A wide spectrum of control related applications 
are presented including a section on parameter optimisation 
and on-line applications. It is discussed that few real-time 
applications use EC methods for control. Additionally, it is 
mentioned that little work shows actual results rather than 
simulated results. A simulator of the corresponding system is 
very often used in order to evaluate the individuals’ fitness 
within a GA. 

Jacobi, Husbands, and Harvey discuss the “reality gap” 
and research the effect of noise in a simulator to evolve 
control systems for a Khepera robot [13]. A simulator’s 
limitations need to be identified so that it does not describe 
properties that do not exist in the real world or does not 
ignore properties that are essential to the real world [14]. 
The authors show that the control system can be successfully 
evolved for the real robot using only a simulator but that 
great care must be taken when implementing the simulator 
while adding the right amount of noise. Further, they state 
that building a simulator for such a simple robot system is 
much easier than for most other robots. A formal model for 
the helicopter used in this work is clearly much more 
complicated than for the Khepera robot. 

C. Evaluation in Simulation 
Sekaj and Sramek present methods based on GAs for the 

design of robust controllers [15]. The methods are applied to 
a nonlinear differential equation and compared to other 
methods, all in simulation. The results are promising, but no 
application other than in simulation has been presented. 

In [16], Shim, Koo, Hoffmann, and Sastry present a 
comprehensive study of control design for an autonomous 
helicopter. Three different control methodologies are 
compared and discussed: linear robust multi-variable control, 
nonlinear tracking control, and fuzzy logic control with 
evolutionary tuning. A GA is used to identify and tune the 
consequent parameters of four controllers using fitness 
evaluated in a simulation. The controllers are designed and 
evaluated on an artificial model created from aerodynamics 
models. 

Perhinschi [17] used a GA to identify the gain parameters 
of linear differential equations which are used to stabilize 
and control a helicopter’s longitudinal channel. The results 
of four different GA strategies are compared by three criteria 
employing the fitness of the best individuals. The GA used a 
linearised model of a helicopter and the controller 
performance was not tested in simulation or on a real system. 

Mao shows in [18] a robust flight controller for a 
helicopter evolved using a GA. The H-infinity mixed 
sensitivity design approach is used for the development of 



 
 

 

the controller. The GA evolves the design parameters based 
on a mathematical model and the final results are tested only 
in simulation. 

In [19], Zufferey et al. discuss the “reality gap” and 
propose a methodology for creating a simulator from a 
formal model. The system is tested on a blimp, a real indoor 
airship, and the results are discussed. Although the results for 
the simple navigational task are promising, this method is 
useful only to this specific type of vehicle which is much 
simpler and more stable than a helicopter system. 

D. Evaluation on the actual System 
Ahmad, Zhang, and Readle present an on-line GA-tuned 

PI controller system [20]. In this paper they present a system 
for tuning a heating system’s controller, which is optimised 
in between control cycles. This is possible due to the slow 
response time required by such a system due to its high 
thermal inertia. 

Nolle et al. present a simulated annealing (SA) approach 
to parameter identification where solutions are evaluated on 
the actual system [21]. The approach shows promising 
results outperforming trained experts in terms of time needed 
and fitness of the results. 

Phillips, Karr, and Walker introduce a fuzzy logic based 
flight controller for a UH-H1 “Huey” helicopter [6]. A GA is 
used to find the parameters of the fuzzy controllers, 
evaluating the individuals on a formal numerical model of 
the helicopter. The resulting controller is tested in simulation 
and on the actual helicopter. The tests on the real system 
showed oscillations and a small problem in the design with 
the fuzzy logic controller where the simulation showed no 
problems.  

III. GENETIC ALGORITHM IMPLEMENTATION 
Any evolutionary search bases its performance on the 

evaluation of the fitness of the individuals (chromosomes) it 
is manipulating; in most cases, this evaluation is achieved 
with the help of a simulator. In fact, this part of the GA 
execution has traditionally been done in the computer where 
the GA is running, using either the calculations of the real 
problem (if it is computer based), a data set (of historical 
data collected about the problem), or a simulator (if it is an 
external or hardware system). For this last case the main 
problem is to get a suitable simulator which can only be as 
good as the model used to create it. Getting a model then 
involves solving the issues of system identification and 
accuracy of the model vs. computational resources required 
to simulate it. 

In the work presented here, rather than using a simulator, 
we use the actual system for the evaluation of the individuals 
for the GA. The GA itself runs on a host computer, for every 
generation, individual chromosomes are transferred to the 
system to be controlled using a communication link. The 
chromosomes are tested in the real target system where the 
controllers’ response is recorded; these results are 

transmitted back to the host computer to perform the fitness 
evaluation. This section gives details on how the GA has 
been configured. 

For the purpose of this study we started with two PID 
controllers: one for controlling the heading of the helicopter 
(i.e. controlling the yaw DOF) and one for controlling the 
altitude (i.e. controlling the y DOF). These two DOFs have 
the characteristic that they are controlled indirectly by two 
control actions (power to each motor) that have to interact to 
achieve two single, yet inter-dependent effects. 

A. Solution Encoding 
To tune a controller for Flyper we encoded five integer 

values in the range specified in table I in the GA’s 
chromosome. The values correspond to the PID parameters 
for a particular controller. Limiting the search space to these 
values has been determined by taking a multiple of the 
parameters that have been identified creating an initial ad 
hoc hand-tuned controller. 

 
TABLE I 

GA’S PARAMETER VALUE RANGES 
 

Parameter Chromosome Heading 
PID 

Altitude 
PID 

Proportional gain 0 – 200 0 – 2.00 0 – 2.00 
Integral gain 0 – 100 0 – 1.00 0 – 1.00 
Integral state max 0 – 16 0 – 400 0 – 400 
Integral state min 0 – 16 0 – 400 0 – 400 
Derivative gain 0 – 400 0 – 4.00 0 – 40.0 

  

B. Initial Population  
The initial population for the GA could be primed using 

initial “semi-optimal” solutions such as based on the hand 
tuned parameters to kick-start the optimization process. We 
decide against this for two main reasons. First, we do not 
know if the hand tuned control parameters are near-optimal 
or if they could lie in a local minimum of the search space. 
Secondly, we want to evaluate the performance of the GA 
rather than the controller, so we initialized the system with a 
fresh and widespread random population. All initial 
individuals are created with random values within the range 
specified in table I. The population size of 20 was chosen, as 
it is small enough to have a reasonable evaluation of each 
generation while providing enough individuals to maintain 
variety. 

C. Fitness Function  
Each individual’s fitness is evaluated on the real system 

rather than in a simulated environment. The evaluation 
function is shown in equation 1. 

e= ∑
t=0

n
 (rt−s)2                (1) 



 
 

 

 
where e is the measure of error, t is the control cycle, n is the 
total number of control cycles for the complete evaluation, rt 
is the reading at control cycle t and s is the set-point. 
Squaring the current error increases the selective pressure on 
the individuals causing the GA to find better solutions 
quicker. For example, if an individual has an error of 5 and 
another has an error of 10, the first would have a fitness 4 
times higher than the second. In this way, squaring the error 
within the fitness function provides an exponentially higher 
penalty to larger errors. The sum of all the squared errors is 
the measure used to determine the final fitness of an 
individual. The equivalent fitness is inverse proportional to 
this measurement of error. 

D. Selection 
The selection of individuals to “survive” to the next 

generation is an important part of the GA. Our selection 
method is based on the roulette wheel strategy but without 
the possibility that an individual is chosen more than once. 
This method enables even the weakest individual to be 
chosen, although fitter individuals are more likely to be 
selected. 

E. Genetic Operators 
In this work, elitism is applied, which means that the best 

individual of every generation is automatically copied to the 
next generation without the need to be selected first. In 
combination with this, 20% of the old population’s 
individuals are copied to the next generation using a roulette 
wheel like system. 

For the crossover operator, two individuals are selected to 
generate one offspring. This new individual is created by 
taking the mean of every chromosome’s loci of the parents. 
This method is applied in order to get 40% of the new 
population. 

Mutation is the source of new variety. In this work, a 
probabilistic random mutation is used on every loci of the 
selected individuals to form 40% of the new population. This 
method of mutation uses a bell shaped probability where the 
chance of a small mutation to take place is higher than the 
chance for a big mutation to take place. 

F. Termination Criteria 
Often, there is a termination criterion in place where the 

GA is stopped when a certain fitness, by one or more 
individuals, is reached. Additionally, another termination 
criterion often used is where the GA is stopped when no 
increase in fitness is found within a defined number of 
generations. Because in this work we are studying the 
behaviour of the GA applied to a real world system at this 
stage we will only use a time-out as the termination criteria, 
stopping the GA only after a specific number of generations 
is reached. 

In a typical run, we let the evolution execute 30 
generations which resulted in 600 individuals tested per run. 

IV. SYSTEM SETUP 
The embedded on-board computer consists of a single-

chip microcontroller; it receives data from three sonar 
sensors arranged to determine the attitude and altitude from a 
smooth surface, and an electronic compass to determine the 
heading. A bluetooth module provides a communication link 
between the microcontroller and a host computer. This link 
can be used to stop the helicopter in case of an emergency 
but more importantly, it provides the means for a host 
computer to gather flight telemetry for performance analysis 
and to send control parameters to be tested by the helicopter. 

The program running on the on-board computer is capable 
of reading all sensor data and calculating the four actuator 
outputs using four separate PID controllers, in average, 13 
times a second. 

Since finding good PID control parameters is a 
challenging task [22], we used the following evolutionary 
technique to tune the heading and altitude control 
parameters. 

A. Tuning the Heading Controller 
To tune the heading control parameters, the helicopter was 

attached to a ball bearing supported turntable. This stand 
restricted its movement to turn to between 90 and -90 
degrees from its middle position (at 0). The evaluation of 
one individual took about 20 seconds and the system got 
another 20 seconds to cool down, before the next individual 
was evaluated. Each individual was tested by perturbing the 
helicopter to each side and analyzing the controller's reaction 
attempting to reach the set-point 0. 

In an initial step, an individual's chromosome (a set of 
parameters for the controller) is sent from the host computer 
to the embedded controller using the communications link. 
Thereafter, the helicopter starts the motors and the controller 
reacts on the heading error based on the parameters received. 
Every control cycle, the value of the current heading is sent 
back to the host computer running the GA to evaluate the 
current individual using (1). 

The helicopter is initially perturbed by 90 degrees from 
the set point by driving the two rotors with different power 
levels. The helicopter turns but cannot go beyond 90 degrees 
as the experimental setup physically blocks it there. At this 
point the controller takes over and starts responding while 
being evaluated by the host computer. After 92 control 
cycles the evaluation and controller are paused and the 
helicopter is perturbed -90 degrees, i.e. into the other 
direction. The controller and its evaluation start again. 

This setup, in combination with the GA running on a host 
computer, enables the automatic implementation and 
evaluation of individuals and thus the execution of the GA 
on the real system without any human intervention. 

B. Tuning the Altitude Controller 
Tuning the altitude controller of the helicopter requires the 

robot to fly relatively freely while keeping the other 



 
 

 

controllers influence as small as possible. For this we built a 
stand that allows the small helicopter to take off and fly in a 
height of up to 1.4 meters while being fixed in yaw, roll, and 
pitch angles. The stand has been made from small aluminum 
rods to keep the mass at a minimum. The weight of the stand 
is effectively neutralized by using a spring system. The 
pulling force of the spring system is equal to the spring 
constant D multiplied by the extended length of the springs. 
To keep the weight neutralizing pulling force as constant as 
possible, the extended length of the spring system changes 
very little over any altitude of the stand. The helicopter’s 
weight, while being attached to the stand, is not increased. 
Still, the mass of the helicopter has increased by the small 
mass of the stand’s arm. 

In order to keep the helicopter from over-heating, we 
stopped the GA from time to time for a few minutes. In the 
case of the altitude control tuning we were not able to use a 
fan to cool down the helicopter in between the evaluations as 
it would have been detected by the altitude sonar sensor. 
This resulted in much longer execution times for the whole 
process. In all, we were able to execute less runs of the 
altitude controller tuning than for the heading controller. 

The same GA strategy that was used for tuning the 
heading controller was used to tune the altitude controller. 
Every GA individual is evaluated by its performance 
reaching and keeping at predefined altitude set-points. First, 
the helicopter needs to reach an altitude of 90 cm for 10 
seconds, then the set altitude is reduced to 50 cm for another 
10 seconds, and finally the helicopter is supposed to land by 
continuously and slowly reducing the height. The measure of 
error is again the sum of all squared errors meaning that 
bigger errors result in a far worse fitness compared to 
smaller errors. 

For both experimental setups we connected an external 
power supply to power the helicopter over the duration of the 
GA. 

V. RESULTS 
The two controllers (heading and altitude) where tuned 

separately using the setup described in the previous section. 
Then they were evaluated by letting Flyper fly freely, using 
both controllers at the same time. In this section, first we will 
analyze the performance of the GAs while running, and then 
we will analyze the performance of the final controllers in 
actual flights. 

A. Performance of the GAs 
Figure 2 and 3 show the typical performance of the GAs in 

terms of fitness of the best individual (inverse to the measure 
of error) of each generation when evolving the control 
parameters for both controllers. Figure 2 shows the evolution 
of the best individual for the heading controller. Figure 3 
shows the evolution of the best individual for a run of the 
altitude controller. 

The main aspect to observe here is that, although we used 

elitism, the best fitness evolution didn’t occur in a monotonic 
way as it should be in a computer based GA. When using 
elitism, each time a generation finishes, the best individual is 
saved for the next generation; in an artificially consistent 
system the main effect should be that the best fitness in a 
given generation is never worse than in the previous 
generation. Between generations we would then expect either 
to find the same best individual or to get a new better one. 

 

 
Fig. 2.  Evolution of the best individual for 3 runs of the heading 

controller tuning. 
 
 

 
Fig. 3.  Evolution of the best individual for a run of the altitude 

controller tuning. 
 
Because the fitness of these chromosomes is being 

evaluated using Flyper, we have seen now that due to the 
high instability, noise, and sensitivity of the system, we get a 
variability in the results which causes the fitness of a 
particular chromosome to be different in different tests. Re-
evaluating a known individual in an artificially consistent 
system would be redundant as the same exact fitness would 
be found. In contrast, in the case of our setup, we need to re-
evaluate every individual as it will most probably result in a 
slightly different fitness, possibly worse. The main issue 
being that we need to make sure the individual not only has a 



 
 

 

high fitness in a particular case, but is consistent across 
generations; in other words, that is not only a good solution 
in one test, but a robust solution across many tests. 

As the individuals evolve, we can clearly see an 
improvement in the controller but with variable performance 
of every individual. An important aspect is that in any case, 
we are getting better individuals, and more importantly, we 
are getting slightly less variability. We can see that it is 
unlikely for the error to become much lower, and of course, 
impossible to be eliminated. At the end of the GA execution 
we will have to choose a best individual as the final outcome 
to the GA. 

Normally, choosing the best solution at the end of the GA 
is a trivial task: juts get the individual with the highest 
fitness. In our case now it becomes an issue to analyze 
carefully. Now we don’t just have a best individual, as we 
have to consider the possibility that if we run the current 
individuals again, we might find a different best individual 
within the same population. We decided then to test a few of 
the best individuals of a completed GA run, for a number of 
times each, and rather than measuring the exact fitness in 
each run, we looked at their repeatability. This gave us the 
individual that would perform the best controlling Flyper in 
general situations, and was found among the best individuals 
of the last population as reported in [23]. In doing this, we 
are finding that a GA that evaluates the fitness in real 
systems does not only evolve towards better fitness, but it 
evolves individuals that are more robust during repeated 
tests. From the results analyzed and presented in [23] we can 
see that the better the average fitness of a population, the 
better its repeatability. 

We have to conclude that although the fitness function is 
not considering repeatability explicitly, the population is still 
evolving toward it. This can be explained by the fact that 
testing the individual using the real system, across 
generations, results in the effect of testing the individuals for 
robustness. This is demonstrated by the fact, that even using 
elitism, the best individual of one generation cannot be 
guaranteed to survive into the next, even if no new best 
individual is created, as another individual from the same 
population could have a better fitness if all were tested for a 
second time. 

This effect proves as well, that we do not need to include 
robustness tests explicitly in the fitness function to achieve 
this. It is a matter of discussion of which method would be 
more efficient: measuring robustness as part of the fitness, or 
making up for this indirectly by instead using more 
generations. This would be the next step to analyze in this 
respect. 

B. Performance of the final Controllers 
After choosing a final most robust individual from each 

controller, Flyper was freed from the experimental 
arrangement to restrain its movement. The two controllers 
were executed simultaneously in the on-board computer and 

the helicopter left to fly autonomously for a short time. 
The initial tests provided some mixed results. When flying 

unrestrained and with combined controllers, two main 
problems appeared: the heading controlled developed an 
offset error, and the altitude controller became very unstable. 
Figure 4 shows the altitude and the altitude control 
command. Figure 5 shows the heading and the heading 
control command. 

The altitude oscillations were expected to severely affect 
the heading controller, as the heading depends on the power 
setting of the rotors. 

Analyzing the behavior of the altitude controller, we 
determined that the GA had evolved a too high integral value 
for the PID controller. During evolution, the helicopter was 
attached to the altitude experimental set up restrain. 
Although the spring system successfully eliminated the 
gravitational pull of the stand weight, its mass was still there 
affecting the inertia of the helicopter when trying to gain 
altitude, the integral term was then exaggerated to help the 
controller respond to the time lag produced by the extra 
mass. Once that mass was eliminated from the system, the 
integral gain caused the system to become unstable. 

 

 
 

Fig. 4.  Performance of the altitude controller with Flyper flying freely 
running both controllers. 

 
To test this we eliminated the integral gain from the 

controller and in effect, it achieved the results we were 
expecting. Figure 6 shows the altitude when controlled with 
only PD gains. 

The system behaved much better at this stage. The reality 
gap became apparent again, as although we were using the 
real system, the need to restrain it to avoid accidents 
produced changes to the system that in turn resulted in 
similar effects to that of using a simulator. But not all was as 
expected. Surprisingly, the heading controller didn’t change 
that much. 

We were expecting the heading to have changed as much 
as the altitude controller, not only for the lack of restrain, but 
because of the effect produced by the altitude severe 
oscillation. The performance of the heading controller and 



 
 

 

the offset error seen in figure 5 remained comparable. As 
expected, the heading performance was better with the new 
altitude control parameters, but not the overall robustness of 
it. 
 

 
Fig. 5.  Performance of the heading controller with Flyper flying freely 

running both controllers. 
 
 

 
Fig. 6.  Performance of the altitude controller without the integral part, 

i.e. PD only controller. 
 
To analyze the real robustness of the heading controller, 

we subtracted the offset error (since it is constant) and found 
it to be very reliable. Figure 7 shows the heading and the 
control command when combined with the PD only altitude 
controller. 

The peak to peak error is not very different from that to 
figure 5, which is surprising given that in figure 5 it was 
coping with a severe interference from the altitude 
oscillations. The overall robustness of the heading controller 
was very high in comparison with the altitude controller. 

C. Overall Analysis 
The overall performance of the controllers can be 

considered very satisfactory given that it was evolved 
starting from a completely random population and with a 
relatively low number of generations. 

The difference in performance found between the heading 

and altitude controller seems to be due to the different effects 
produced by the experimental setups. The mechanical 
restrains used for the altitude controller affected more the 
performance of the system, with respect to a free system, as 
compared to the effect of the restrains used for the heading 
controller. Therefore the reality gap was larger in the case of 
the altitude controller’s tuning. 

 

 
Fig. 7.  Performance of the heading controller in combination with the 

PD only controller, and error offset eliminated. 
 
The reality gap was not breached entirely anyway due to 

the need to restrain the helicopter during evolution, which 
affected the behavior of the system. Further tests will be 
required to determine if this gap can be breached at all using 
the real system in these conditions. It is safe to assume that 
such gap does not exist if the pure real system could be used. 
But in cases such as the presented in this paper, where the 
pure system cannot be used in practice, the reality gap 
remains an issue. 

Still, we confirm with our analysis that evolving a 
controller on real systems, even with constrained 
characteristics, can produce robust solutions, which is very 
difficult to achieve with a simulator. 

VI. CONCLUSION 
We have analyzed the behavior of an evolutionary 

optimization process using real systems and have concluded 
that robustness is a trait that is always gained with such a 
setup. This can be achieved even if robustness is not 
evaluated explicitly on the fitness function. Further work can 
be done to determine which would be a more efficient 
strategy, including explicit robustness test in the fitness 
function or making up for it with longer time-out for the 
evolutionary process. 

The reality gap will still exist if the pure system cannot be 
used for practical reasons, such as restrains for safety 
purposes. It will be a matter of further analysis to determine 
if the gap can be reduced more by better simulation or by 
more efficient restrains on the real system. 
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