

I. INTRODUCTION

Abstract— A genetic algorithm (GA) presents an excellent
method for controller parameter tuning. In our work, we
evolved the heading as well as the altitude controller for a small
lightweight helicopter. We use the real flying robot to evaluate
the GA’s individuals rather than an artificially consistent
simulator. By doing so we avoid the “reality gap”, taking the
controller from the simulator to the real world. In this paper we
analyze the evolutionary aspects of this technique and discuss
the issues that need to be considered for it to perform well and
result in robust controllers.

he demand for autonomous helicopters from industry,
military and in the civil sector has been growing rapidly

[1]. One reason for this is the fact that helicopters are
versatile in their maneuverability. Unfortunately, this also
makes the platform very difficult to control. Therefore, much
research is done in this area, often with rather large
helicopters with a rotor span of more than a meter [2], up to
rotor spans of over 3 meters [3]. These large helicopters
present an obvious safety risk and also emit fumes, are loud,
and test set-ups and experiments are complex. In our work,
we use a very small and lightweight helicopter. This platform
can be used indoors, is low cost, less of a safety risk, and
very flexible in its application. We will refer to this platform
as Flyper – flying performing robot – as this is its name in
various projects.

In our work we present ongoing research in achieving
stable and robust control for this indoor helicopter. We
applied a genetic algorithm (GA) to find PID control
parameters of the heading as well as the altitude controllers
running on the embedded system. Instead of using an
artificially consistent simulator we used the actual robot to
evaluate the control parameters’ fitness. In this paper we
present and discuss our results from the analysis of executing
GA using real systems to evaluate the fitness, and their
relevance in creating robust controllers.

We will use results presented elsewhere in combination
with some new results presented in this paper, and perform

Mario A. Gongora is with the Centre for Computational Intelligence

(CCI), De Montfort University, Leicester, UK, (phone: +44 116 207 8226;
email: mgongora@dmu.ac.uk).

Benjamin N. Passow is with the Institute of Creative Technologies
(IOCT), De Montfort University, Leicester, UK, (email:
benpassow@dmu.ac.uk).

Adrian A. Hopgood is a Professor and Dean of the Faculty of
Technology at De Montfort University, Leicester, UK, (email:
aah@dmu.ac.uk).

an analysis on the critical issues we have identified, mainly:
the measurement of fitness, performance of the evolution
process, and the robustness vs. accuracy of the final
controller.

The remainder of this paper is organized as follows. In
section II we provide an overview of related work in terms of
GA tuned controllers and execution of GA in real systems. In
section III we will present and discuss the structure of the
GA we used for our experiments and in section IV the setup
to execute the fitness function on the real platform (Flyper).
In section V we analyze the results and section VI concludes
the paper and suggests further work.

II. BACKGROUND
First, let us provide a succinct introduction to the platform

we have used to experiment so that it can be seen in the
context of this paper. The autonomous helicopter is based on
a Twister Bell 47 small indoor model helicopter. It is a
coaxial rotor helicopter with twin counter-rotating rotors (it
does not have a tail rotor) with 340 mm span, driven by two
motors, and uses two servos to control the rotor blades' plane
angles. The weight of the helicopter in its original state is
approximately 210 grams without battery and it can lift up to
120 grams. This helicopter has six degrees of freedom
(DOF) controlled by four inputs. It can fly for approximately
10 minutes with its standard battery. Figure 1 shows the
helicopter diagram and its 6 degrees of freedom.

Fig. 1. Diagram showing the six degrees of freedom of the helicopter

used in this paper.

The controller deals with the four inputs to this system:

two position values for the actuators that control the plane of
the rotors, and two power values for the motors that drive
each rotor. The actuators that control the rotors’ plane,

Robustness Analysis of Evolutionary Controller Tuning
using Real Systems

Mario A. Gongora, Benjamin N. Passow, and Adrian A. Hopgood

T

directly affect the pitch and roll degrees of freedom, which in
turn affect the x, y and z positions. The rotor driving motors
affect the y position in terms of their total combined power,
and the yaw in terms of their difference. This shows the
complexity of the control process for this particular platform
in which some DOFs are controlled directly (y) and others
indirectly (yaw) relative to the control actions, in addition to
the fact that most DOFs are inter-dependable (roll and pitch
with x, y and z).

The original radio controlled system has been replaced by
an onboard single chip embedded computer. All the control
programs run in this onboard computer, which can
communicate with a desktop computer via Bluetooth for
telemetry purposes.

A. Control Architecture
Computational intelligence methods have been applied

and well studied in controlling unmanned aerial vehicles
(UAV) capable of vertical take-off and landing (VTOL) [4,
5, 6, 7]. Others have shown that traditional control
techniques, such as proportional-integral-derivative (PID)
controllers, work well in VTOL control [8, 9, 10].

Kadmiry and Driankov describe a TSK-type fuzzy system
to control the altitude and attitude of a small size, unmanned
helicopter [4]. They use a mathematical model obtained from
an existing platform to model the TSK fuzzy system and
consequent parameters. It is stated that the large class of non-
linear plants can well be represented by the TSK models
with only minor changes. On the other hand, the formal
system identification can be very difficult for a complex
system such as a helicopter. Using a PID control technique,
only a few certain gain and border parameters need to be
identified.

Puntunan and Parnichkun introduce a heading direction
and floating height controller for a single rotor helicopter
[10]. The control system uses a proportional plus derivative
controller (PD) to maintain the helicopter’s heading and
height, while a human pilot controls the horizontal
movements remotely. Puntunan and Parnichkun present test
results that confirm stable controlling capability with a
relative small margin of error.

Sanchez, Becerra, Velez present in [8] an unmanned
helicopter control system combining a Mamdani type fuzzy
logic controller [11] with PID controllers. The Fuzzy
Inference System (FIS) controls the translational movement
while the PID controllers handle the altitude and attitude of
the helicopter. The system was tested via simulation for
hovering and slow velocities which showed good
performance.

Saripalli, Montgomery, and Sukhatme introduce an
autonomous helicopter which uses differential GPS, an
inertial measurement unit (IMU), and a sonar sensor to
determine the helicopter’s position and attitude [9]. Their
system is based on PI controllers. Seven test flights confirm
the successful control and landing of the helicopter. This

work shows that PI controllers work well and the integral
control part is very useful in helicopter control.

B. Evolving Controllers
Identifying and tuning control parameters for such

vehicles can be a challenging task. Fleming and Purshouse
present in [12] a survey of EC in control systems
engineering. A wide spectrum of control related applications
are presented including a section on parameter optimisation
and on-line applications. It is discussed that few real-time
applications use EC methods for control. Additionally, it is
mentioned that little work shows actual results rather than
simulated results. A simulator of the corresponding system is
very often used in order to evaluate the individuals’ fitness
within a GA.

Jacobi, Husbands, and Harvey discuss the “reality gap”
and research the effect of noise in a simulator to evolve
control systems for a Khepera robot [13]. A simulator’s
limitations need to be identified so that it does not describe
properties that do not exist in the real world or does not
ignore properties that are essential to the real world [14].
The authors show that the control system can be successfully
evolved for the real robot using only a simulator but that
great care must be taken when implementing the simulator
while adding the right amount of noise. Further, they state
that building a simulator for such a simple robot system is
much easier than for most other robots. A formal model for
the helicopter used in this work is clearly much more
complicated than for the Khepera robot.

C. Evaluation in Simulation
Sekaj and Sramek present methods based on GAs for the

design of robust controllers [15]. The methods are applied to
a nonlinear differential equation and compared to other
methods, all in simulation. The results are promising, but no
application other than in simulation has been presented.

In [16], Shim, Koo, Hoffmann, and Sastry present a
comprehensive study of control design for an autonomous
helicopter. Three different control methodologies are
compared and discussed: linear robust multi-variable control,
nonlinear tracking control, and fuzzy logic control with
evolutionary tuning. A GA is used to identify and tune the
consequent parameters of four controllers using fitness
evaluated in a simulation. The controllers are designed and
evaluated on an artificial model created from aerodynamics
models.

Perhinschi [17] used a GA to identify the gain parameters
of linear differential equations which are used to stabilize
and control a helicopter’s longitudinal channel. The results
of four different GA strategies are compared by three criteria
employing the fitness of the best individuals. The GA used a
linearised model of a helicopter and the controller
performance was not tested in simulation or on a real system.

Mao shows in [18] a robust flight controller for a
helicopter evolved using a GA. The H-infinity mixed
sensitivity design approach is used for the development of

the controller. The GA evolves the design parameters based
on a mathematical model and the final results are tested only
in simulation.

In [19], Zufferey et al. discuss the “reality gap” and
propose a methodology for creating a simulator from a
formal model. The system is tested on a blimp, a real indoor
airship, and the results are discussed. Although the results for
the simple navigational task are promising, this method is
useful only to this specific type of vehicle which is much
simpler and more stable than a helicopter system.

D. Evaluation on the actual System
Ahmad, Zhang, and Readle present an on-line GA-tuned

PI controller system [20]. In this paper they present a system
for tuning a heating system’s controller, which is optimised
in between control cycles. This is possible due to the slow
response time required by such a system due to its high
thermal inertia.

Nolle et al. present a simulated annealing (SA) approach
to parameter identification where solutions are evaluated on
the actual system [21]. The approach shows promising
results outperforming trained experts in terms of time needed
and fitness of the results.

Phillips, Karr, and Walker introduce a fuzzy logic based
flight controller for a UH-H1 “Huey” helicopter [6]. A GA is
used to find the parameters of the fuzzy controllers,
evaluating the individuals on a formal numerical model of
the helicopter. The resulting controller is tested in simulation
and on the actual helicopter. The tests on the real system
showed oscillations and a small problem in the design with
the fuzzy logic controller where the simulation showed no
problems.

III. GENETIC ALGORITHM IMPLEMENTATION
Any evolutionary search bases its performance on the

evaluation of the fitness of the individuals (chromosomes) it
is manipulating; in most cases, this evaluation is achieved
with the help of a simulator. In fact, this part of the GA
execution has traditionally been done in the computer where
the GA is running, using either the calculations of the real
problem (if it is computer based), a data set (of historical
data collected about the problem), or a simulator (if it is an
external or hardware system). For this last case the main
problem is to get a suitable simulator which can only be as
good as the model used to create it. Getting a model then
involves solving the issues of system identification and
accuracy of the model vs. computational resources required
to simulate it.

In the work presented here, rather than using a simulator,
we use the actual system for the evaluation of the individuals
for the GA. The GA itself runs on a host computer, for every
generation, individual chromosomes are transferred to the
system to be controlled using a communication link. The
chromosomes are tested in the real target system where the
controllers’ response is recorded; these results are

transmitted back to the host computer to perform the fitness
evaluation. This section gives details on how the GA has
been configured.

For the purpose of this study we started with two PID
controllers: one for controlling the heading of the helicopter
(i.e. controlling the yaw DOF) and one for controlling the
altitude (i.e. controlling the y DOF). These two DOFs have
the characteristic that they are controlled indirectly by two
control actions (power to each motor) that have to interact to
achieve two single, yet inter-dependent effects.

A. Solution Encoding
To tune a controller for Flyper we encoded five integer

values in the range specified in table I in the GA’s
chromosome. The values correspond to the PID parameters
for a particular controller. Limiting the search space to these
values has been determined by taking a multiple of the
parameters that have been identified creating an initial ad
hoc hand-tuned controller.

TABLE I

GA’S PARAMETER VALUE RANGES

Parameter Chromosome Heading
PID

Altitude
PID

Proportional gain 0 – 200 0 – 2.00 0 – 2.00
Integral gain 0 – 100 0 – 1.00 0 – 1.00
Integral state max 0 – 16 0 – 400 0 – 400
Integral state min 0 – 16 0 – 400 0 – 400
Derivative gain 0 – 400 0 – 4.00 0 – 40.0

B. Initial Population
The initial population for the GA could be primed using

initial “semi-optimal” solutions such as based on the hand
tuned parameters to kick-start the optimization process. We
decide against this for two main reasons. First, we do not
know if the hand tuned control parameters are near-optimal
or if they could lie in a local minimum of the search space.
Secondly, we want to evaluate the performance of the GA
rather than the controller, so we initialized the system with a
fresh and widespread random population. All initial
individuals are created with random values within the range
specified in table I. The population size of 20 was chosen, as
it is small enough to have a reasonable evaluation of each
generation while providing enough individuals to maintain
variety.

C. Fitness Function
Each individual’s fitness is evaluated on the real system

rather than in a simulated environment. The evaluation
function is shown in equation 1.

e= ∑
t=0

n
 (rt−s)2 (1)

where e is the measure of error, t is the control cycle, n is the
total number of control cycles for the complete evaluation, rt
is the reading at control cycle t and s is the set-point.
Squaring the current error increases the selective pressure on
the individuals causing the GA to find better solutions
quicker. For example, if an individual has an error of 5 and
another has an error of 10, the first would have a fitness 4
times higher than the second. In this way, squaring the error
within the fitness function provides an exponentially higher
penalty to larger errors. The sum of all the squared errors is
the measure used to determine the final fitness of an
individual. The equivalent fitness is inverse proportional to
this measurement of error.

D. Selection
The selection of individuals to “survive” to the next

generation is an important part of the GA. Our selection
method is based on the roulette wheel strategy but without
the possibility that an individual is chosen more than once.
This method enables even the weakest individual to be
chosen, although fitter individuals are more likely to be
selected.

E. Genetic Operators
In this work, elitism is applied, which means that the best

individual of every generation is automatically copied to the
next generation without the need to be selected first. In
combination with this, 20% of the old population’s
individuals are copied to the next generation using a roulette
wheel like system.

For the crossover operator, two individuals are selected to
generate one offspring. This new individual is created by
taking the mean of every chromosome’s loci of the parents.
This method is applied in order to get 40% of the new
population.

Mutation is the source of new variety. In this work, a
probabilistic random mutation is used on every loci of the
selected individuals to form 40% of the new population. This
method of mutation uses a bell shaped probability where the
chance of a small mutation to take place is higher than the
chance for a big mutation to take place.

F. Termination Criteria
Often, there is a termination criterion in place where the

GA is stopped when a certain fitness, by one or more
individuals, is reached. Additionally, another termination
criterion often used is where the GA is stopped when no
increase in fitness is found within a defined number of
generations. Because in this work we are studying the
behaviour of the GA applied to a real world system at this
stage we will only use a time-out as the termination criteria,
stopping the GA only after a specific number of generations
is reached.

In a typical run, we let the evolution execute 30
generations which resulted in 600 individuals tested per run.

IV. SYSTEM SETUP
The embedded on-board computer consists of a single-

chip microcontroller; it receives data from three sonar
sensors arranged to determine the attitude and altitude from a
smooth surface, and an electronic compass to determine the
heading. A bluetooth module provides a communication link
between the microcontroller and a host computer. This link
can be used to stop the helicopter in case of an emergency
but more importantly, it provides the means for a host
computer to gather flight telemetry for performance analysis
and to send control parameters to be tested by the helicopter.

The program running on the on-board computer is capable
of reading all sensor data and calculating the four actuator
outputs using four separate PID controllers, in average, 13
times a second.

Since finding good PID control parameters is a
challenging task [22], we used the following evolutionary
technique to tune the heading and altitude control
parameters.

A. Tuning the Heading Controller
To tune the heading control parameters, the helicopter was

attached to a ball bearing supported turntable. This stand
restricted its movement to turn to between 90 and -90
degrees from its middle position (at 0). The evaluation of
one individual took about 20 seconds and the system got
another 20 seconds to cool down, before the next individual
was evaluated. Each individual was tested by perturbing the
helicopter to each side and analyzing the controller's reaction
attempting to reach the set-point 0.

In an initial step, an individual's chromosome (a set of
parameters for the controller) is sent from the host computer
to the embedded controller using the communications link.
Thereafter, the helicopter starts the motors and the controller
reacts on the heading error based on the parameters received.
Every control cycle, the value of the current heading is sent
back to the host computer running the GA to evaluate the
current individual using (1).

The helicopter is initially perturbed by 90 degrees from
the set point by driving the two rotors with different power
levels. The helicopter turns but cannot go beyond 90 degrees
as the experimental setup physically blocks it there. At this
point the controller takes over and starts responding while
being evaluated by the host computer. After 92 control
cycles the evaluation and controller are paused and the
helicopter is perturbed -90 degrees, i.e. into the other
direction. The controller and its evaluation start again.

This setup, in combination with the GA running on a host
computer, enables the automatic implementation and
evaluation of individuals and thus the execution of the GA
on the real system without any human intervention.

B. Tuning the Altitude Controller
Tuning the altitude controller of the helicopter requires the

robot to fly relatively freely while keeping the other

controllers influence as small as possible. For this we built a
stand that allows the small helicopter to take off and fly in a
height of up to 1.4 meters while being fixed in yaw, roll, and
pitch angles. The stand has been made from small aluminum
rods to keep the mass at a minimum. The weight of the stand
is effectively neutralized by using a spring system. The
pulling force of the spring system is equal to the spring
constant D multiplied by the extended length of the springs.
To keep the weight neutralizing pulling force as constant as
possible, the extended length of the spring system changes
very little over any altitude of the stand. The helicopter’s
weight, while being attached to the stand, is not increased.
Still, the mass of the helicopter has increased by the small
mass of the stand’s arm.

In order to keep the helicopter from over-heating, we
stopped the GA from time to time for a few minutes. In the
case of the altitude control tuning we were not able to use a
fan to cool down the helicopter in between the evaluations as
it would have been detected by the altitude sonar sensor.
This resulted in much longer execution times for the whole
process. In all, we were able to execute less runs of the
altitude controller tuning than for the heading controller.

The same GA strategy that was used for tuning the
heading controller was used to tune the altitude controller.
Every GA individual is evaluated by its performance
reaching and keeping at predefined altitude set-points. First,
the helicopter needs to reach an altitude of 90 cm for 10
seconds, then the set altitude is reduced to 50 cm for another
10 seconds, and finally the helicopter is supposed to land by
continuously and slowly reducing the height. The measure of
error is again the sum of all squared errors meaning that
bigger errors result in a far worse fitness compared to
smaller errors.

For both experimental setups we connected an external
power supply to power the helicopter over the duration of the
GA.

V. RESULTS
The two controllers (heading and altitude) where tuned

separately using the setup described in the previous section.
Then they were evaluated by letting Flyper fly freely, using
both controllers at the same time. In this section, first we will
analyze the performance of the GAs while running, and then
we will analyze the performance of the final controllers in
actual flights.

A. Performance of the GAs
Figure 2 and 3 show the typical performance of the GAs in

terms of fitness of the best individual (inverse to the measure
of error) of each generation when evolving the control
parameters for both controllers. Figure 2 shows the evolution
of the best individual for the heading controller. Figure 3
shows the evolution of the best individual for a run of the
altitude controller.

The main aspect to observe here is that, although we used

elitism, the best fitness evolution didn’t occur in a monotonic
way as it should be in a computer based GA. When using
elitism, each time a generation finishes, the best individual is
saved for the next generation; in an artificially consistent
system the main effect should be that the best fitness in a
given generation is never worse than in the previous
generation. Between generations we would then expect either
to find the same best individual or to get a new better one.

Fig. 2. Evolution of the best individual for 3 runs of the heading

controller tuning.

Fig. 3. Evolution of the best individual for a run of the altitude

controller tuning.

Because the fitness of these chromosomes is being

evaluated using Flyper, we have seen now that due to the
high instability, noise, and sensitivity of the system, we get a
variability in the results which causes the fitness of a
particular chromosome to be different in different tests. Re-
evaluating a known individual in an artificially consistent
system would be redundant as the same exact fitness would
be found. In contrast, in the case of our setup, we need to re-
evaluate every individual as it will most probably result in a
slightly different fitness, possibly worse. The main issue
being that we need to make sure the individual not only has a

high fitness in a particular case, but is consistent across
generations; in other words, that is not only a good solution
in one test, but a robust solution across many tests.

As the individuals evolve, we can clearly see an
improvement in the controller but with variable performance
of every individual. An important aspect is that in any case,
we are getting better individuals, and more importantly, we
are getting slightly less variability. We can see that it is
unlikely for the error to become much lower, and of course,
impossible to be eliminated. At the end of the GA execution
we will have to choose a best individual as the final outcome
to the GA.

Normally, choosing the best solution at the end of the GA
is a trivial task: juts get the individual with the highest
fitness. In our case now it becomes an issue to analyze
carefully. Now we don’t just have a best individual, as we
have to consider the possibility that if we run the current
individuals again, we might find a different best individual
within the same population. We decided then to test a few of
the best individuals of a completed GA run, for a number of
times each, and rather than measuring the exact fitness in
each run, we looked at their repeatability. This gave us the
individual that would perform the best controlling Flyper in
general situations, and was found among the best individuals
of the last population as reported in [23]. In doing this, we
are finding that a GA that evaluates the fitness in real
systems does not only evolve towards better fitness, but it
evolves individuals that are more robust during repeated
tests. From the results analyzed and presented in [23] we can
see that the better the average fitness of a population, the
better its repeatability.

We have to conclude that although the fitness function is
not considering repeatability explicitly, the population is still
evolving toward it. This can be explained by the fact that
testing the individual using the real system, across
generations, results in the effect of testing the individuals for
robustness. This is demonstrated by the fact, that even using
elitism, the best individual of one generation cannot be
guaranteed to survive into the next, even if no new best
individual is created, as another individual from the same
population could have a better fitness if all were tested for a
second time.

This effect proves as well, that we do not need to include
robustness tests explicitly in the fitness function to achieve
this. It is a matter of discussion of which method would be
more efficient: measuring robustness as part of the fitness, or
making up for this indirectly by instead using more
generations. This would be the next step to analyze in this
respect.

B. Performance of the final Controllers
After choosing a final most robust individual from each

controller, Flyper was freed from the experimental
arrangement to restrain its movement. The two controllers
were executed simultaneously in the on-board computer and

the helicopter left to fly autonomously for a short time.
The initial tests provided some mixed results. When flying

unrestrained and with combined controllers, two main
problems appeared: the heading controlled developed an
offset error, and the altitude controller became very unstable.
Figure 4 shows the altitude and the altitude control
command. Figure 5 shows the heading and the heading
control command.

The altitude oscillations were expected to severely affect
the heading controller, as the heading depends on the power
setting of the rotors.

Analyzing the behavior of the altitude controller, we
determined that the GA had evolved a too high integral value
for the PID controller. During evolution, the helicopter was
attached to the altitude experimental set up restrain.
Although the spring system successfully eliminated the
gravitational pull of the stand weight, its mass was still there
affecting the inertia of the helicopter when trying to gain
altitude, the integral term was then exaggerated to help the
controller respond to the time lag produced by the extra
mass. Once that mass was eliminated from the system, the
integral gain caused the system to become unstable.

Fig. 4. Performance of the altitude controller with Flyper flying freely
running both controllers.

To test this we eliminated the integral gain from the

controller and in effect, it achieved the results we were
expecting. Figure 6 shows the altitude when controlled with
only PD gains.

The system behaved much better at this stage. The reality
gap became apparent again, as although we were using the
real system, the need to restrain it to avoid accidents
produced changes to the system that in turn resulted in
similar effects to that of using a simulator. But not all was as
expected. Surprisingly, the heading controller didn’t change
that much.

We were expecting the heading to have changed as much
as the altitude controller, not only for the lack of restrain, but
because of the effect produced by the altitude severe
oscillation. The performance of the heading controller and

the offset error seen in figure 5 remained comparable. As
expected, the heading performance was better with the new
altitude control parameters, but not the overall robustness of
it.

Fig. 5. Performance of the heading controller with Flyper flying freely

running both controllers.

Fig. 6. Performance of the altitude controller without the integral part,

i.e. PD only controller.

To analyze the real robustness of the heading controller,

we subtracted the offset error (since it is constant) and found
it to be very reliable. Figure 7 shows the heading and the
control command when combined with the PD only altitude
controller.

The peak to peak error is not very different from that to
figure 5, which is surprising given that in figure 5 it was
coping with a severe interference from the altitude
oscillations. The overall robustness of the heading controller
was very high in comparison with the altitude controller.

C. Overall Analysis
The overall performance of the controllers can be

considered very satisfactory given that it was evolved
starting from a completely random population and with a
relatively low number of generations.

The difference in performance found between the heading

and altitude controller seems to be due to the different effects
produced by the experimental setups. The mechanical
restrains used for the altitude controller affected more the
performance of the system, with respect to a free system, as
compared to the effect of the restrains used for the heading
controller. Therefore the reality gap was larger in the case of
the altitude controller’s tuning.

Fig. 7. Performance of the heading controller in combination with the

PD only controller, and error offset eliminated.

The reality gap was not breached entirely anyway due to

the need to restrain the helicopter during evolution, which
affected the behavior of the system. Further tests will be
required to determine if this gap can be breached at all using
the real system in these conditions. It is safe to assume that
such gap does not exist if the pure real system could be used.
But in cases such as the presented in this paper, where the
pure system cannot be used in practice, the reality gap
remains an issue.

Still, we confirm with our analysis that evolving a
controller on real systems, even with constrained
characteristics, can produce robust solutions, which is very
difficult to achieve with a simulator.

VI. CONCLUSION
We have analyzed the behavior of an evolutionary

optimization process using real systems and have concluded
that robustness is a trait that is always gained with such a
setup. This can be achieved even if robustness is not
evaluated explicitly on the fitness function. Further work can
be done to determine which would be a more efficient
strategy, including explicit robustness test in the fitness
function or making up for it with longer time-out for the
evolutionary process.

The reality gap will still exist if the pure system cannot be
used for practical reasons, such as restrains for safety
purposes. It will be a matter of further analysis to determine
if the gap can be reduced more by better simulation or by
more efficient restrains on the real system.

REFERENCES
[1] P. Spanoudakis, L. Doitsidis, N. C. Tsourveloudis, and K. P.

Valavanis, “A market overview of the vertical take-off and landing
uavs,” in Workshop on Unmanned Aerial Vehicles, 11th
Mediterranean Conference on Control and Automation, Rhodes,
Greece, 2003.

[2] A. Coates, P. Abbeel, and A. Ng, “Learning for control from multiple
demonstrations,” in the 25th International Conference on Machine
Learning, ICML, Helsinki, Finland, 2008.

[3] B. Ludington, E. Johnson, and G. Vachtsevanos, “Augmenting uav
autonomy,” Robotics & Automation Magazine, IEEE, vol. 13, no. 3,
pp. 63–71, 2006.

[4] B. Kadmiry and D. Driankov, “A fuzzy gain-scheduler for the attitude
control of an unmanned helicopter,” IEEE Transactions on Fuzzy
Systems, vol. 12, pp. 502–515, 2004.

[5] M. Sugeno, Fuzzy Modeling and Control: Selected Works of M.
Sugeno. CRC Press, 1999, ch. Development of an Intelligente
Unmanned Helicopter, pp. 13–43.

[6] C. Phillips, C. L. Karr, and G. Walker, “Helicopter flight control with
fuzzy logic and genetic algorithms,” Engineering Applications of
Artificial Intelligence, vol. 9, no. 2, pp. 175–184, 1996.

[7] H. Yamada, J. Takeuchi, G. Matsumoto, and M. Ichikawa, “A flying
object using hardware implemented, vision processing and motor
control system with adaptive neural network,” in Neural Information
Processing, 2002. ICONIP ’02. Proceedings of the 9th International
Conference on, vol. 2, 18-22 Nov. 2002, pp. 685–690vol.2.

[8] E. Sanchez, H. Becerra, and C. Velez, “Combining fuzzy and pid
control for an unmanned helicopter,” in Annual Meeting of the North
American Fuzzy Information Processing Society, Unidad Guadalajara,
Mexico, 2005, pp. 235–240.

[9] S. Saripalli, J. Montgomery, and G. Sukhatme, “Vision-based
autonomous landing of an unmanned aerial vehicle,” in Robotics and
Automation, 2002. Proceedings. ICRA’02. IEEE International
Conference on, vol. 3, Washington, DC, May 2002, pp. 2799–2804.

[10] S. Puntunan and M. Parnichkun, “Control of heading direction and
floating height of a flying robot,” in IEEE International Conference on
Industrial Technology, vol. 2, Bangkok, Thailand, 2002, pp. 690–693.

[11] E. H. Mamdani, “Application of fuzzy algorithms for simple dynamic
plant,” IEE Proceedings on Control Theory and Applications, vol.
121, pp. 1585 – 1588, 1974.

[12] P. Fleming and R. Purshouse, “Evolutionary algorithms in control
systems engineering: a survey,” Control Engineering Practice, vol. 10,
no. 11, pp. 1223–1241, 2002.

[13] N. Jacobi, P. Husbands, and I. Harvey, Lecture Notes in Computer
Science - Advances in Artificial Life.1em plus 0.5em minus
0.4emSpringer, UK, 1995, ch. Noise and the Reality Gap: The Use of
Simulation in Evolutionary Robotics, pp. 704–720.

[14] R. A. Brooks, “Intelligence without reason,” in Proceedings of the
12th International Joint Conference on Artificial Intelligence, J.
Myopoulos and R. Reiter, Eds.1em plus 0.5em minus 0.4emSydney,
Australia: Morgan Kaufmann publishers Inc.: San Mateo, CA, USA,
1991, pp. 569–595.

[15] I. Sekaj and M. Sramek, “Robust controller design based on genetic
algorithms and system simulation,” in Decision and Control, 2005
and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE
Conference on, 12-15 Dec. 2005, pp. 6881–6886.

[16] H. Shim, T. Koo, F. Hoffmann, and S. Sastry, “A comprehensive
study of control design for an autonomous helicopter,” in Decision
and Control, 1998. Proceedings of the 37th IEEE Conference on, vol.
4, Tampa, Florida, USA, December 1998, pp. 3653–3658.

[17] M. Perhinschi, “A modified genetic algorithm for the design of
autonomous helicopter control system,” in Proceedings of the AIAA
Guidance, Navigation and Control Conference, 1997, pp. 1111–1120.

[18] J. Mao, “Robust flight controller design for helicopters based on
genetic algorithm,” in Proceedings of Fifth IFAC Congress,
Barcelona, 2002.

[19] J. Zufferey, A. Guanella, A. Beyeler, and D. Floreano, “Flying over
the reality gap: From simulated to real indoor airships,” Autonomous
Robots, vol. 21, no. 3, pp. 243–254, 2006.

[20] M. Ahmad, L. Zhang, and J. Readle, “Online genetic algorithm tuning
of a pi controller for a heating system,” in Genetic Algorithms In

Engineering Systems:Innovations And Applications, 1997. GALESIA
97. Second International Conference On (Conf. Publ. No. 446), 2-4
Sept. 1997, pp. 510–515.

[21] L. Nolle, A. Goodyear, A. Hopgood, P. Picton, and N. Braithwaite,
“Improved simulated annealing with step width adaptation for
langmuir probe tuning,” Engineering Optimization, vol. 37, no. 5, pp.
463–477, 2005.

[22] P. De Moura Oliveira, “Modern heuristics review for pid control
systems optimization: A teaching experiment,” in Proceedings of the
5th International Conference on Control and Automation, ICCA’05,
2005, pp. 828–833.

[23] Passow, B. Gongora, M. Coupland, S. Hopgood, A.A., Real-time
Evolution of an Embedded Controller for an Autonomous Helicopter,
In Proc. 2008 IEEE Congress on Evolutionary Computation (CEC
2008), Hong Kong, 2008.

	INTRODUCTION
	Background
	Control Architecture
	Evolving Controllers
	Evaluation in Simulation
	Evaluation on the actual System

	Genetic Algorithm Implementation
	Solution Encoding
	Initial Population
	Fitness Function
	Selection
	Genetic Operators
	Termination Criteria

	System Setup
	Tuning the Heading Controller
	Tuning the Altitude Controller

	Results
	Performance of the GAs
	Performance of the final Controllers
	Overall Analysis

	Conclusion
	References

