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Abstract— Achieving a balance between the exploration and 
exploitation capabilities of genetic algorithms is a key factor for 
their success in solving complicated search problems. 
Incorporating a local search method within a genetic algorithm 
can enhance the exploitation of local knowledge but it risks 
decelerating the schema building process. 

This paper defines some features of a local search method 
that might improve the balance between exploration and 
exploitation of genetic algorithms. Based on these features a 
probabilistic local search method is proposed. The proposed 
search method has been tested as a secondary method within a 
staged hybrid genetic algorithm and as a standalone method. The 
experiments conducted showed that the proposed method can 
speed up the search without affecting the schema processing of 
genetic algorithms. The experiments also showed that the 
proposed algorithm as a standalone algorithm can, in some cases, 
outperform a pure genetic algorithm. 

Keywords—hybrid genetic algorithm; Lamarckian search; 
Lamarckian learning; memetic search; local search; schema 
processing. 

I.  INTRODUCTION 
A genetic algorithm is a population-based search and 

optimization method that mimics the process of natural 
evolution [1]. Genetic algorithms have received significant 
interest in recent years and are being increasingly used to solve 
real-world problems. The power of genetic algorithms comes 
from their ability to combine both exploration and exploitation 
in an optimal way [2]. The exploration and the exploitation 
abilities of a genetic algorithm can be enhanced by 
incorporating a local search method [3].  The combination can 
accelerate the search towards the global optimum [4]. This 
constructive form of cooperation between a genetic algorithm 
and a local search can produce an effective and efficient search 
algorithm [5]. 

However, the interference between the two methods can 
also be destructive. This destructive interference can be in the 
form of a premature convergence in the Lamarckian search, 
which may force the fast convergence speed of this strategy to 
be sacrificed for high quality solutions of other learning 
strategies [6]. It can also be in the form of destroying good 

local solutions. The staged hybrid genetic algorithm [7] and the 
use of carefully chosen control parameters [8] have been 
suggested to minimize such a destructive interference. 

Genetic populations contain a huge amount of search 
information which can be utilized in different ways.  For 
example, genetic information was used in the PMBGA 
algorithms [9] and quantum-inspired genetic algorithms [10] 
that were proposed as alternatives to the pure genetic algorithm 
to overcome some of the difficulties in solving real-world 
problems. Genetic information has been utilized to adapt the 
control parameters of genetic algorithms to improve the search 
performance [11]. Search information has also been used to 
decide on performing a genetic search or a local search in some 
hybrids [12] and on the optimal fraction of individuals that 
should perform a local search [13].  

However, this valuable genetic search information is rarely 
used by the local search method. Due to the lack of positional 
information in the genetic information, advanced local methods 
are unable to improve its speed. The use of clustering 
techniques can be of high cost and dependent on the problem 
since these forms of local search usually work on the 
phenotype space. In addition to this, advanced local search 
methods usually consume a considerable number of function 
evaluations, which can aggravate the hybrid’s loss caused by 
any destructive interference. 

To sum up, some of the good features of a search method 
that may enable it to be incorporated in a genetic algorithm in 
an effective and efficient way are:  

• The ability to avoid any disruption to the genetic 
algorithm schema processing. 

• The ability to reuse the available genetic search 
information in efficient way. 

• The cost of the search should be low to reduce the loss 
caused by any destructive interference.  

In this paper, a simple probabilistic algorithm based on the 
features described above is proposed and tested as a secondary 
search method and as a standalone method.  
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II. THE PROPOSED SEARCH ALGORITHM 
The proposed algorithm is a probabilistic method that 

works on the genotype space. It modifies the initial solution 
based on a group of solutions from the genetic population. This 
can improve the initial solution in accordance with the global 
view captured by the genetic search in order to minimize any 
conflict between the two search methods. The partial global 
aspect of the search method can be controlled by the group size 
and the mechanism of selecting the group members. This 
method is also characterized by its low cost, which helps to 
minimize the loss of the hybrid’s time in the case of any 
undesirable interference. 

The algorithm assumes that each gene contributes 
uniformly to the fitness of the solution. Based on this 
assumption, the search method compares the genetic structure 
and the fitness of the initial solution with the structures and the 
fitness of a group of solutions. Depending on the differences in 
both the structure and the fitness between this solution and the 
group members, the solution structure is modified in the 
direction of improving its fitness score. The new solution is 
evaluated and then inserted back into the population regardless 
of its new fitness. 

A. The search mechanism 
The algorithm starts with an initial solution and a randomly 

selected group of solutions from the current genetic population.  

The algorithm assumes that the value of each gene in the 
initial solution represents the probability of that gene having 
the value of one. It also assumes that the produced set of 
probabilities represents the initial probabilities of having the 
value of one in each gene of the optimal solution’s structure. 

This set of initial probabilities is modified according to the 
differences in the genetic structure and the fitness between the 
initial solution and the group members in order to estimate the 
optimal solution structure. An increase in the fitness score of a 
group member compared to the initial solution accompanied by 
a change in gene value from ‘0’ in the initial solution to ‘1’ in 
the group member means increasing the probability associated 
with that gene. The probability is increased by a value that is 
proportional to the increase in fitness score in order to bias the 
initial solution toward a better structure. However, if that 
increase in the fitness is accompanied by a change from ‘1’ to 
‘0’, the associated probability is decreased by the same value. 
A decrease in the fitness score in the previous cases will result 
in decreasing the probability in the first case and increasing it 
in the second by a value that is proportional to the absolute 
value of the difference in fitness score between the group 
member and the initial solution. 

The algorithm compares every member of the group with 
the initial solution, in turn, and adjusts the genes' probabilities 
in the way described above. The resulting set of genes’ 
probabilities is compared against a set of randomly generated 
numbers over the range [0, 1]. If the gene probability is less 
than or equal to the random number generated, the value of that 
gene is set to one otherwise it is set to zero. Then, the new 
structure is evaluated and returned as the new improved 
solution. 

III. EMPIRICAL METHODOLOGY 
In order to evaluate the performance of the proposed search 

method within a global genetic algorithm, a set of experiments 
has been conducted. In these experiments, the performance of a 
hybrid genetic algorithm that utilizes the proposed search 
method is compared with the performance of the pure genetic 
algorithm. To maximize the interference between the two 
search methods, the hybrid genetic algorithm performs a local 
search iteration after each global genetic iteration. In order to 
assess the amount of disruption that this algorithm can cause on 
the schema processing, the algorithm is applied to every 
individual of the genetic population and the pure Lamarckian 
learning strategy was used. The decrease in the number of 
experiments that converge to the global optimum together with 
the convergence speed compared to the pure genetic algorithm 
are used as measures of the disruption to the schema 
processing.  

The optimization problems were chosen to evaluate the 
basic assumption of the proposed method on the hybrid 
performance. Since the proposed method assumes that each 
gene of the solution contributes uniformly to the solution 
fitness, problems with different marginal fitness contribution of 
their genes were used.  

In these experiments, two empirical methodologies were 
followed. The classical methodology, which uses a set of 
known test functions to evaluate the performance of an 
algorithm, was used. The other methodology, which employs a 
problem generator [14] for studying the behavior of 
evolutionary algorithms, has also been used to evaluate the 
proposed algorithm. 

Following the classical methodology, three test functions 
were used to assess the hybrid’s and the proposed search 
algorithm’s performance. The first one is a uniformly scaled 
fitness function, which is the MaxOne problem, and the second 
is the BinInt problem [15], which has an exponentially scaled 
fitness structure. The third test function is Schwefel’s function 
[16], which is a non-linear multimodal function. 

In addition to the classical empirical methodology, the 
problem generator methodology has been followed. A problem 
generator is an abstract model capable of producing randomly 
generated problems on demand. The use of problem generators 
allows experimentation over a randomly generated set of 
problems rather than on a few hand-chosen examples. This can 
increase the predictive power of the results for a problem class 
as a whole.  

The multimodal problem generator has been slightly 
modified and used. Instead of generating the locations of equal 
peaks, it generates the locations of a number of local optima. 

A multimodal exponential problem generator has been 
proposed and used. The multimodal exponential problem 
generator is similar to the multimodal generator. The 
multimodal exponential generator also generates O local 
optima. The evaluation of a solution is carried out, first, by 
locating the nearest local optimum in Hamming space. Then, 
the nearest local optimum is used to generate a Hamming 
distance string of the current solution. The produced Hamming 
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string is inverted and evaluated using the following fitness 
function: 

 
where Afo is an amplitude factor associated with each local 
optimum and xi represents the value in the inverted Hamming 
distance string. The value of the amplitude factor is from the 
range (0, 1]. The value of this factor for the global optimum is 
1.0.  

IV. SIMULATIONS AND ANALYSIS  
The experiments that have been conducted aimed to 

evaluate the performance of the proposed algorithm within a 
hybrid. The performance is measured by investigating the 
search method’s effect on the population size and the 
population convergence speed. The algorithm is also evaluated 
by studying its effect on the schema processing of the global 
genetic algorithm. In the last set of experiments the search 
algorithm is evaluated as a stand-alone algorithm by comparing 
its performance to the pure genetic algorithm and a hybrid 
combining them.  

A. Minimum population size 
The first set of experiments was conducted to investigate 

the effect on the population size requirements by hybridizing 
the proposed algorithm. The experiments used the bisection 
method [17] to find the minimum population size required.  

The hybrid used the simple elitist genetic algorithm with 
binary tournament selection, uniform crossover, and no 
mutation as the global search method. The crossover rate was 
set to 1.0. The proposed algorithm was used as an embedded 
search method that is performed by each individual of the 
population after each global genetic iteration. The experiments 
have been conducted using different group sizes. The group 
sizes tested were {0, 2, 4, 8, 16, 32}. A hybrid with a group 
size of 0 is identical to the pure genetic algorithm. In these 
experiments, two values of probability factors (0.5 and 1.0) 
were tested.  

The experiments were conducted to determine the 
minimum population sizes required for solving the MaxOne 
problem with a string length of 120 bit and the BinInt problem 
with a string length of 30. The results of both problems show 
that using a probability factor of 0.5 significantly reduces the 
minimum population size required for group sizes of more than 
2, Fig. 1. This reduction in is accompanied by a decrease in the 
convergence speed. However, using the statistical t-test shows 
that the decrease in the convergence speed is insignificant and 
the decrease in the population size is significant.  

For a probability factor of 1.0, the experiments of the 
MaxOne problem show that there is a significant increase in 
the convergence speed with insignificant increase in the 
population size. However, the experiments of the BinInt 
problem show a significant increase in the convergence speed 
with a considerable decrease in the population size. 

The poor performance of a hybrid when utilizing a group 
size of 2 can be explained in the terms of the partial view 

provided by the group size. The partial global view provided 
by that group size is very narrow and not enough to avoid a 
destructive interference between the two search methods 
especially when using a probability factor of 1.0, where the 
improved solution is more dependent on the partial view 
gained than the initial solution structure. 
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Fig. 1. The Effect of Group Size and the Probability Factor on the Hybrid's 
Minimum Population Size and Convergence Speed of the BinInt Problem.  

The results show that utilizing the proposed search 
algorithm within a genetic algorithm using a suitable group 
size can improve the genetic performance in terms of the 
population size, the convergence speed or both of them.. 

B. Effect on Schema processing 
The aim of this set of experiments was to assess the 

disruption to the schema processing caused by the new 
algorithm. This can be accomplished by comparing the number 
of times each algorithm converges to the global optimum with 
that of the pure genetic algorithm.  

The first set of experiments was conducted using the 
multimodal exponential problem generator. The experiments 
were carried out using five and ten randomly generated local 
optima with amplitude factors of {0.2,0.4,0.6,0.8,1.0} and 
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} respectively. The 
chromosome length was set to 30.  An elitist generational 
genetic algorithm with binary tournament selection and 
uniform crossover was used as the global search algorithm. The 
population size was set to 100. The crossover rate was 1.0 and 
the mutation probability was 0.000333 (pm=1.0/(lxN)). 
Experiments were run for a complete convergence of the 
population or a maximum of 10,000 function evaluations. 

 The results of the two problems were similar. They show 
that all the tested group sizes and probability factors, except the 
combination of a group size of two and a probability factor of 
1.0, show no decrease in the number of experiments that 
converged to the global optimum (Fig. 2). This means no 
disruption for the schema processing was induced by 
incorporating the proposed search method with the specified 
group sizes and probability factors. The graph also shows that 
using a probability factor of 1.0 increased the convergence 
speed of the population to the global optimum for all group 
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sizes tested. The diagram also shows that a probability factor of 
1.0 is more suitable for large group sizes, whereas a value of 
0.5 seems more suitable for small sizes. This ability of a large 
group size to capture a wide view of the search space when 
combined with a strong effect on the initial solution can direct 
it in the right direction. However, using the same strong effect 
with a small group size which provides a very narrow view of 
the search space can misguide the search. 
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Fig. 2. Effect on the Schema Processing when Solving the BinInt Problem.  

In another experiment, the algorithms were used to 
optimize Schwefel’s function with ten variables. The 
chromosome length of each variable was 16 bits. The algorithm 
used a global simple elitist genetic algorithm with binary 
tournament selection and 2-point crossover. The crossover rate 
is 0.6 and the mutation rate is 0.000001. The population size 
was 300. The stopping criterion was a maximum number of 
function evaluations, which was set to 300,000. 
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Fig. 3. Solving Schwefel’s Function.  

The results of these experiments, as depicted in Fig. 3, 
show that with a probability factor of 0.5 and for a group size 
greater than or equal to four there is always an increase in the 
number of times of finding the global optimum. However, for a 
probability factor of 1.0, the increase occurred with group sizes 
of 16 and 32. The results also show that this improvement in 

the number of times of reaching the global optimum is always 
accompanied by an improvement in the convergence speed. A 
larger group size is needed to capture a good partial view of the 
search space compared to the sizes needed in the previous 
experiments due to the nature of the fitness landscape which is 
more complicated than the previous problems. 

C. The search method as a stand alone algorithm  
 The proposed algorithm was tested as a standalone 

algorithm to optimize three multimodal functions. It has been 
used to optimize the Schwefel function with ten variables, the 
multimodal problem and the multimodal exponential problem. 
The algorithm used a population size equal to that used by the 
pure genetic algorithm and the hybrid. The performance of the 
algorithm was compared with that of the pure genetic 
algorithm and a hybrid combined them.  

The results of employing the proposed search algorithm on 
Schwefel’s fitness function demonstrated that the pure genetic 
algorithm outperformed the proposed algorithm using different 
group sizes and probability factors. Fig. 4 shows the average 
fitness of the population as a function of the number of 
function evaluations for the algorithm as a standalone and a 
secondary algorithm compared to that of the pure genetic 
algorithm. The algorithm shown in this figure used a group size 
of 8 and a probability factor of 0.5. The graphs demonstrate 
that despite the poor performance of the proposed algorithm as 
a standalone algorithm compared to the pure genetic algorithm, 
their combination outperformed either of them. The graphs 
depict the convergence of 50 experiments of each algorithm. 
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Fig. 4. The Convergence Details of the Schwefel's Function. 

A multimodal exponential problem generator with five 
local optima was used to evaluate the performance of the 
algorithm. The amplitude factors were set to {0.2, 0.4, 0.6, 0.8, 
1.0}. The experiments demonstrate that the search algorithm, in 
most cases, performed worse than the pure genetic algorithm. 
In a few cases however, the proposed algorithm outperformed 
the pure genetic algorithm in terms of the number of 
experiments that converged to the global optimum. It also 
outperformed the hybrid in terms of the convergence speed. 
The convergence of the population for the three algorithms as a 
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function of the number of function evaluations is depicted in 
Fig. 5. The group size used was 16 and the probability factor 
was set to 1.0.  
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Fig. 5. Comparing the Convergence of the Proposed Algorithm with the Pure 
Genetic Algorithm and the Hybrid on 5-modal Exponential Problem.  

In a third set of experiments, the multimodal problem 
generator with five local optima has also been used to evaluate 
the search method performance. The string length of solutions 
and the population size were set to 100. The amplitude factors 
were set to {5.0, 4.0, 3.0, 2.0, 1.0}.  

An elitist generational genetic algorithm with binary 
tournament selection and two-point crossover was used as the 
global search algorithm. The crossover rate was 0.6 and the 
mutation probability was 0.0001.  Experiments were run for a 
complete convergence of the population or a maximum of 
100,000 function evaluations.   

The results of this set of experiments were encouraging. 
They show that the proposed algorithm outperformed the pure 
genetic algorithm using different population sizes when 
combined with a probability factor of 0.5. The algorithm 
converged faster to the global optimum than the pure genetic 
algorithm. It also outperformed a hybrid that combined it with 
the genetic algorithms using a group size of 2 and 4 (Fig. 6). 
However, the standalone algorithm showed poor performance 
when using a probability factor of 1.0. The algorithm with a 
probability factor of 1.0 can guide the search to non-optimal 
solutions. The probability of guiding the search towards a non-
optimal solution increases as the group size decreases. 
However, a hybrid with a probability factor of 1.0 
outperformed the pure genetic algorithm, and both the 
standalone algorithm and the hybrid with a probability factor of 
0.5 for group sizes of 8, 16 and 32. 

Fig. 7 compares the performance of the algorithm using 
different group sizes and probability factors. The graph 
demonstrates the fast convergence speed associated with a 
probability factor of 1.0. The graph also shows that this 
convergence can be towards non-optimal solutions. There is a 
decrease in the number of experiments that converged to non-
optimal solution accompanied with an improvement in the 
convergence speed as the group size increases. In contrast to 

the probability factor of 1.0, the probability factor of 0.5 shows 
a decrease in convergence speed as the group size changes 
from 2 to 32 with the ability to find the exact global optimum 
in all cases. 
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Fig. 6. Convergence Speed of the Proposed Algorithm as a Stand Alone 
Algorithm. 
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Fig. 7. Comparing the Effect of the Probability Factor and the Group Size on 
Algorithm Performance. 

Fig. 8 compares the population convergence speed of the 
algorithm as a standalone optimization technique with that of 
the pure genetic algorithm and a hybridization of them. This 
graph compares an algorithm with a probability factor of 1.0 
and a group size of 32. The graphs show that a hybridization 
can get the best out of the two search methods. It produced an 
algorithm that was able to find the global optimum in all the 
experiments, in contrast to the standalone algorithm which can 
miss that optimum some times. The hybrid was able to employ 
the ability of the pure genetic algorithm to reach the global 
optimum in all experiments and utilize the fast convergence 
speed of the secondary method to produce an effective and 
efficient algorithm. 
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Fig. 8. Comparing the Convergence of the Proposed Algorithm with the Pure 
Genetic Algorithm and the Hybrid on 5-modal Problem. 

V. CONCLUSION AND FUTURE WORK  
The proposed algorithm shows good performance as a 

standalone search method on problems with a uniformly scaled 
fitness function. However, the standalone algorithm and the 
pure genetic algorithm are outperformed by their hybrid on 
problems with non-uniformly scaled fitness function. 

The basic assumption of the proposed algorithm, which 
states that each gene contributes uniformly to the fitness of the 
solution, can explain the good performance of the algorithm, as 
a standalone optimization technique, on the multimodal 
generator problem compared to the poor performance on the 
other two problems.  

However, the encouraging performance of the algorithm as 
a secondary search method, even when applied to non-
uniformly scaled fitness functions, can be explained as follows. 
The genes of non-uniformly scaled fitness functions converge 
at different rates [15]. The most important genes converge 
towards their optimal value before the less important genes. 
The proposed algorithm concentrates on the differences in the 
population structure and fitness to modify the non-identical 
genes. The algorithm does not modify the identical genes. 
These non-identical genes in the non-uniformly scaled 
problems are the genes that converge at a slower rate than the 
identical genes that have been converged to their optimal value 
as a result of the genetic search. The algorithm uses a sample of 
the genetic population to determine the genes that have not 
been converged yet. This sample involves the initial solution 
and a selected group of solutions.  The accuracy of the 
algorithm in determining the converged genes increases as the 
sample size increases. This ability of determining the already 
converged genes in the population reduces the possibility of 
disrupting the genetic schema processing. This, in turn, can 
reduce the probability of facing premature convergence 
problems and can accelerate the search towards the global 
optimum. The good performance of the hybrid that uses large 
group sizes can thereby be explained.  

One of the possible ways of improving the performance of 
the proposed algorithm is to use a variable group size for each 
iteration. It is also possible to set the values of the probability 
factor depending on the group size used. This can be done in 
accordance with the findings of the experiments of this paper. 
These experiments show that high probability factors are 
suitable for large groups and low factors are more suitable to 
small groups.  The probability factor can be made adaptable to 
the group size using this approach. 
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