
Accelerating Genetic Schema Processing Through
Local Search

Tarek A. El-Mihoub
Computer Engineering Department

University of Tripoli
Tripoli, Libya

tmihoub@tripoliuniv.edu.ly

Adrian Hopgood
Sheffield Business School

 Sheffield Hallam University
Sheffield, UK

a.hopgood@shu.ac.uk

Ibrahim A. Aref
Computer Engineering Department

University of Tripoli
Tripoli, Libya

i.aref@ec.uot.edu.ly

Abstract— Achieving a balance between the exploration and
exploitation capabilities of genetic algorithms is a key factor for
their success in solving complicated search problems.
Incorporating a local search method within a genetic algorithm
can enhance the exploitation of local knowledge but it risks
decelerating the schema building process.

This paper defines some features of a local search method
that might improve the balance between exploration and
exploitation of genetic algorithms. Based on these features a
probabilistic local search method is proposed. The proposed
search method has been tested as a secondary method within a
staged hybrid genetic algorithm and as a standalone method. The
experiments conducted showed that the proposed method can
speed up the search without affecting the schema processing of
genetic algorithms. The experiments also showed that the
proposed algorithm as a standalone algorithm can, in some cases,
outperform a pure genetic algorithm.

Keywords—hybrid genetic algorithm; Lamarckian search;
Lamarckian learning; memetic search; local search; schema
processing.

I. INTRODUCTION
A genetic algorithm is a population-based search and

optimization method that mimics the process of natural
evolution [1]. Genetic algorithms have received significant
interest in recent years and are being increasingly used to solve
real-world problems. The power of genetic algorithms comes
from their ability to combine both exploration and exploitation
in an optimal way [2]. The exploration and the exploitation
abilities of a genetic algorithm can be enhanced by
incorporating a local search method [3]. The combination can
accelerate the search towards the global optimum [4]. This
constructive form of cooperation between a genetic algorithm
and a local search can produce an effective and efficient search
algorithm [5].

However, the interference between the two methods can
also be destructive. This destructive interference can be in the
form of a premature convergence in the Lamarckian search,
which may force the fast convergence speed of this strategy to
be sacrificed for high quality solutions of other learning
strategies [6]. It can also be in the form of destroying good

local solutions. The staged hybrid genetic algorithm [7] and the
use of carefully chosen control parameters [8] have been
suggested to minimize such a destructive interference.

Genetic populations contain a huge amount of search
information which can be utilized in different ways. For
example, genetic information was used in the PMBGA
algorithms [9] and quantum-inspired genetic algorithms [10]
that were proposed as alternatives to the pure genetic algorithm
to overcome some of the difficulties in solving real-world
problems. Genetic information has been utilized to adapt the
control parameters of genetic algorithms to improve the search
performance [11]. Search information has also been used to
decide on performing a genetic search or a local search in some
hybrids [12] and on the optimal fraction of individuals that
should perform a local search [13].

However, this valuable genetic search information is rarely
used by the local search method. Due to the lack of positional
information in the genetic information, advanced local methods
are unable to improve its speed. The use of clustering
techniques can be of high cost and dependent on the problem
since these forms of local search usually work on the
phenotype space. In addition to this, advanced local search
methods usually consume a considerable number of function
evaluations, which can aggravate the hybrid’s loss caused by
any destructive interference.

To sum up, some of the good features of a search method
that may enable it to be incorporated in a genetic algorithm in
an effective and efficient way are:

• The ability to avoid any disruption to the genetic
algorithm schema processing.

• The ability to reuse the available genetic search
information in efficient way.

• The cost of the search should be low to reduce the loss
caused by any destructive interference.

In this paper, a simple probabilistic algorithm based on the
features described above is proposed and tested as a secondary
search method and as a standalone method.

2013 International Conference on Computer, Control, Informatics and Its Applications

978-1-4799-1078-6/13/$31.00 c©2013 IEEE 343

II. THE PROPOSED SEARCH ALGORITHM
The proposed algorithm is a probabilistic method that

works on the genotype space. It modifies the initial solution
based on a group of solutions from the genetic population. This
can improve the initial solution in accordance with the global
view captured by the genetic search in order to minimize any
conflict between the two search methods. The partial global
aspect of the search method can be controlled by the group size
and the mechanism of selecting the group members. This
method is also characterized by its low cost, which helps to
minimize the loss of the hybrid’s time in the case of any
undesirable interference.

The algorithm assumes that each gene contributes
uniformly to the fitness of the solution. Based on this
assumption, the search method compares the genetic structure
and the fitness of the initial solution with the structures and the
fitness of a group of solutions. Depending on the differences in
both the structure and the fitness between this solution and the
group members, the solution structure is modified in the
direction of improving its fitness score. The new solution is
evaluated and then inserted back into the population regardless
of its new fitness.

A. The search mechanism
The algorithm starts with an initial solution and a randomly

selected group of solutions from the current genetic population.

The algorithm assumes that the value of each gene in the
initial solution represents the probability of that gene having
the value of one. It also assumes that the produced set of
probabilities represents the initial probabilities of having the
value of one in each gene of the optimal solution’s structure.

This set of initial probabilities is modified according to the
differences in the genetic structure and the fitness between the
initial solution and the group members in order to estimate the
optimal solution structure. An increase in the fitness score of a
group member compared to the initial solution accompanied by
a change in gene value from ‘0’ in the initial solution to ‘1’ in
the group member means increasing the probability associated
with that gene. The probability is increased by a value that is
proportional to the increase in fitness score in order to bias the
initial solution toward a better structure. However, if that
increase in the fitness is accompanied by a change from ‘1’ to
‘0’, the associated probability is decreased by the same value.
A decrease in the fitness score in the previous cases will result
in decreasing the probability in the first case and increasing it
in the second by a value that is proportional to the absolute
value of the difference in fitness score between the group
member and the initial solution.

The algorithm compares every member of the group with
the initial solution, in turn, and adjusts the genes' probabilities
in the way described above. The resulting set of genes’
probabilities is compared against a set of randomly generated
numbers over the range [0, 1]. If the gene probability is less
than or equal to the random number generated, the value of that
gene is set to one otherwise it is set to zero. Then, the new
structure is evaluated and returned as the new improved
solution.

III. EMPIRICAL METHODOLOGY
In order to evaluate the performance of the proposed search

method within a global genetic algorithm, a set of experiments
has been conducted. In these experiments, the performance of a
hybrid genetic algorithm that utilizes the proposed search
method is compared with the performance of the pure genetic
algorithm. To maximize the interference between the two
search methods, the hybrid genetic algorithm performs a local
search iteration after each global genetic iteration. In order to
assess the amount of disruption that this algorithm can cause on
the schema processing, the algorithm is applied to every
individual of the genetic population and the pure Lamarckian
learning strategy was used. The decrease in the number of
experiments that converge to the global optimum together with
the convergence speed compared to the pure genetic algorithm
are used as measures of the disruption to the schema
processing.

The optimization problems were chosen to evaluate the
basic assumption of the proposed method on the hybrid
performance. Since the proposed method assumes that each
gene of the solution contributes uniformly to the solution
fitness, problems with different marginal fitness contribution of
their genes were used.

In these experiments, two empirical methodologies were
followed. The classical methodology, which uses a set of
known test functions to evaluate the performance of an
algorithm, was used. The other methodology, which employs a
problem generator [14] for studying the behavior of
evolutionary algorithms, has also been used to evaluate the
proposed algorithm.

Following the classical methodology, three test functions
were used to assess the hybrid’s and the proposed search
algorithm’s performance. The first one is a uniformly scaled
fitness function, which is the MaxOne problem, and the second
is the BinInt problem [15], which has an exponentially scaled
fitness structure. The third test function is Schwefel’s function
[16], which is a non-linear multimodal function.

In addition to the classical empirical methodology, the
problem generator methodology has been followed. A problem
generator is an abstract model capable of producing randomly
generated problems on demand. The use of problem generators
allows experimentation over a randomly generated set of
problems rather than on a few hand-chosen examples. This can
increase the predictive power of the results for a problem class
as a whole.

The multimodal problem generator has been slightly
modified and used. Instead of generating the locations of equal
peaks, it generates the locations of a number of local optima.

A multimodal exponential problem generator has been
proposed and used. The multimodal exponential problem
generator is similar to the multimodal generator. The
multimodal exponential generator also generates O local
optima. The evaluation of a solution is carried out, first, by
locating the nearest local optimum in Hamming space. Then,
the nearest local optimum is used to generate a Hamming
distance string of the current solution. The produced Hamming

344

string is inverted and evaluated using the following fitness
function:

where Afo is an amplitude factor associated with each local
optimum and xi represents the value in the inverted Hamming
distance string. The value of the amplitude factor is from the
range (0, 1]. The value of this factor for the global optimum is
1.0.

IV. SIMULATIONS AND ANALYSIS
The experiments that have been conducted aimed to

evaluate the performance of the proposed algorithm within a
hybrid. The performance is measured by investigating the
search method’s effect on the population size and the
population convergence speed. The algorithm is also evaluated
by studying its effect on the schema processing of the global
genetic algorithm. In the last set of experiments the search
algorithm is evaluated as a stand-alone algorithm by comparing
its performance to the pure genetic algorithm and a hybrid
combining them.

A. Minimum population size
The first set of experiments was conducted to investigate

the effect on the population size requirements by hybridizing
the proposed algorithm. The experiments used the bisection
method [17] to find the minimum population size required.

The hybrid used the simple elitist genetic algorithm with
binary tournament selection, uniform crossover, and no
mutation as the global search method. The crossover rate was
set to 1.0. The proposed algorithm was used as an embedded
search method that is performed by each individual of the
population after each global genetic iteration. The experiments
have been conducted using different group sizes. The group
sizes tested were {0, 2, 4, 8, 16, 32}. A hybrid with a group
size of 0 is identical to the pure genetic algorithm. In these
experiments, two values of probability factors (0.5 and 1.0)
were tested.

The experiments were conducted to determine the
minimum population sizes required for solving the MaxOne
problem with a string length of 120 bit and the BinInt problem
with a string length of 30. The results of both problems show
that using a probability factor of 0.5 significantly reduces the
minimum population size required for group sizes of more than
2, Fig. 1. This reduction in is accompanied by a decrease in the
convergence speed. However, using the statistical t-test shows
that the decrease in the convergence speed is insignificant and
the decrease in the population size is significant.

For a probability factor of 1.0, the experiments of the
MaxOne problem show that there is a significant increase in
the convergence speed with insignificant increase in the
population size. However, the experiments of the BinInt
problem show a significant increase in the convergence speed
with a considerable decrease in the population size.

The poor performance of a hybrid when utilizing a group
size of 2 can be explained in the terms of the partial view

provided by the group size. The partial global view provided
by that group size is very narrow and not enough to avoid a
destructive interference between the two search methods
especially when using a probability factor of 1.0, where the
improved solution is more dependent on the partial view
gained than the initial solution structure.

0 2 4 8 16 32
70

80

90

100

110

120

130

Group Size

M
in

im
um

 P
op

ul
at

io
n

S
iz

e

Probability Factor 0.5
Probability Factor 1.0

0 2 4 8 16 32
2400

2600

2800

3000

3200

3400

3600

Group Size

C
on

ve
rg

en
ce

 S
pe

ed

Probability Factor 0.5
Probability Factor 1.0

Fig. 1. The Effect of Group Size and the Probability Factor on the Hybrid's
Minimum Population Size and Convergence Speed of the BinInt Problem.

The results show that utilizing the proposed search
algorithm within a genetic algorithm using a suitable group
size can improve the genetic performance in terms of the
population size, the convergence speed or both of them..

B. Effect on Schema processing
The aim of this set of experiments was to assess the

disruption to the schema processing caused by the new
algorithm. This can be accomplished by comparing the number
of times each algorithm converges to the global optimum with
that of the pure genetic algorithm.

The first set of experiments was conducted using the
multimodal exponential problem generator. The experiments
were carried out using five and ten randomly generated local
optima with amplitude factors of {0.2,0.4,0.6,0.8,1.0} and
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} respectively. The
chromosome length was set to 30. An elitist generational
genetic algorithm with binary tournament selection and
uniform crossover was used as the global search algorithm. The
population size was set to 100. The crossover rate was 1.0 and
the mutation probability was 0.000333 (pm=1.0/(lxN)).
Experiments were run for a complete convergence of the
population or a maximum of 10,000 function evaluations.

 The results of the two problems were similar. They show
that all the tested group sizes and probability factors, except the
combination of a group size of two and a probability factor of
1.0, show no decrease in the number of experiments that
converged to the global optimum (Fig. 2). This means no
disruption for the schema processing was induced by
incorporating the proposed search method with the specified
group sizes and probability factors. The graph also shows that
using a probability factor of 1.0 increased the convergence
speed of the population to the global optimum for all group

345

sizes tested. The diagram also shows that a probability factor of
1.0 is more suitable for large group sizes, whereas a value of
0.5 seems more suitable for small sizes. This ability of a large
group size to capture a wide view of the search space when
combined with a strong effect on the initial solution can direct
it in the right direction. However, using the same strong effect
with a small group size which provides a very narrow view of
the search space can misguide the search.

0 2 4 8 16 32
0

20

40

60

80

100

Group Size

P
er

ce
nt

ag
e

C
on

ve
rg

ed

BinInt Problem

Probability Factor 0.5
Probability Factor 1.0

0 2 4 8 16 32
4000

4500

5000

5500

6000

6500

7000

Group Size

C
on

ve
rg

en
ce

 S
pe

ed

(F

un
ct

io
n

E
va

lu
at

io
ns

)

Probability Factor 0.5
Probability Factor 1.0

Fig. 2. Effect on the Schema Processing when Solving the BinInt Problem.

In another experiment, the algorithms were used to
optimize Schwefel’s function with ten variables. The
chromosome length of each variable was 16 bits. The algorithm
used a global simple elitist genetic algorithm with binary
tournament selection and 2-point crossover. The crossover rate
is 0.6 and the mutation rate is 0.000001. The population size
was 300. The stopping criterion was a maximum number of
function evaluations, which was set to 300,000.

0 2 4 8 16 32
0

20

40

60

80

100
Schwefel Function (d=10)

Group Size

P
er

ce
nt

ag
e

C
on

ve
rg

ed

Probability Factor 0.5
Probability Factor 1.0

-5 0 2 4 8 16 32
2.4

2.5

2.6

2.7

2.8

2.9
x 10

5

Group Size

C
on

ve
rg

en
ce

 S
pe

ed
(F

un
ci

on

E
va

lu
at

io
ns

)

Probability Factor 0.5
Probability Factor 1.0

Fig. 3. Solving Schwefel’s Function.

The results of these experiments, as depicted in Fig. 3,
show that with a probability factor of 0.5 and for a group size
greater than or equal to four there is always an increase in the
number of times of finding the global optimum. However, for a
probability factor of 1.0, the increase occurred with group sizes
of 16 and 32. The results also show that this improvement in

the number of times of reaching the global optimum is always
accompanied by an improvement in the convergence speed. A
larger group size is needed to capture a good partial view of the
search space compared to the sizes needed in the previous
experiments due to the nature of the fitness landscape which is
more complicated than the previous problems.

C. The search method as a stand alone algorithm
 The proposed algorithm was tested as a standalone

algorithm to optimize three multimodal functions. It has been
used to optimize the Schwefel function with ten variables, the
multimodal problem and the multimodal exponential problem.
The algorithm used a population size equal to that used by the
pure genetic algorithm and the hybrid. The performance of the
algorithm was compared with that of the pure genetic
algorithm and a hybrid combined them.

The results of employing the proposed search algorithm on
Schwefel’s fitness function demonstrated that the pure genetic
algorithm outperformed the proposed algorithm using different
group sizes and probability factors. Fig. 4 shows the average
fitness of the population as a function of the number of
function evaluations for the algorithm as a standalone and a
secondary algorithm compared to that of the pure genetic
algorithm. The algorithm shown in this figure used a group size
of 8 and a probability factor of 0.5. The graphs demonstrate
that despite the poor performance of the proposed algorithm as
a standalone algorithm compared to the pure genetic algorithm,
their combination outperformed either of them. The graphs
depict the convergence of 50 experiments of each algorithm.

10
3

10
4

10
5

-6000

-4000

-2000

0
Local Search (Group Size 8)

10
3

10
4

10
5

-6000

-4000

-2000

0
SGA

P
op

ul
at

io
n

A
ve

ra
ge

 F
itn

es
s

10
3

10
4

10
5

-6000

-4000

-2000

0
Hybrid

No. Function Evaluations

Fig. 4. The Convergence Details of the Schwefel's Function.

A multimodal exponential problem generator with five
local optima was used to evaluate the performance of the
algorithm. The amplitude factors were set to {0.2, 0.4, 0.6, 0.8,
1.0}. The experiments demonstrate that the search algorithm, in
most cases, performed worse than the pure genetic algorithm.
In a few cases however, the proposed algorithm outperformed
the pure genetic algorithm in terms of the number of
experiments that converged to the global optimum. It also
outperformed the hybrid in terms of the convergence speed.
The convergence of the population for the three algorithms as a

346

function of the number of function evaluations is depicted in
Fig. 5. The group size used was 16 and the probability factor
was set to 1.0.

500 1000 1500 2000 2500 3000
0

5

10

15
x 10

8 Local Search (Group Size 16)

500 1000 1500 2000 2500 3000
0

5

10

15
x 10

8 SGA

P
op

ul
at

io
n'

s
A

ve
ra

ge
 F

itn
es

s

500 1000 1500 2000 2500 3000
0

5

10

15
x 10

8 Hybrid

No. Function Evaluations

Fig. 5. Comparing the Convergence of the Proposed Algorithm with the Pure
Genetic Algorithm and the Hybrid on 5-modal Exponential Problem.

In a third set of experiments, the multimodal problem
generator with five local optima has also been used to evaluate
the search method performance. The string length of solutions
and the population size were set to 100. The amplitude factors
were set to {5.0, 4.0, 3.0, 2.0, 1.0}.

An elitist generational genetic algorithm with binary
tournament selection and two-point crossover was used as the
global search algorithm. The crossover rate was 0.6 and the
mutation probability was 0.0001. Experiments were run for a
complete convergence of the population or a maximum of
100,000 function evaluations.

The results of this set of experiments were encouraging.
They show that the proposed algorithm outperformed the pure
genetic algorithm using different population sizes when
combined with a probability factor of 0.5. The algorithm
converged faster to the global optimum than the pure genetic
algorithm. It also outperformed a hybrid that combined it with
the genetic algorithms using a group size of 2 and 4 (Fig. 6).
However, the standalone algorithm showed poor performance
when using a probability factor of 1.0. The algorithm with a
probability factor of 1.0 can guide the search to non-optimal
solutions. The probability of guiding the search towards a non-
optimal solution increases as the group size decreases.
However, a hybrid with a probability factor of 1.0
outperformed the pure genetic algorithm, and both the
standalone algorithm and the hybrid with a probability factor of
0.5 for group sizes of 8, 16 and 32.

Fig. 7 compares the performance of the algorithm using
different group sizes and probability factors. The graph
demonstrates the fast convergence speed associated with a
probability factor of 1.0. The graph also shows that this
convergence can be towards non-optimal solutions. There is a
decrease in the number of experiments that converged to non-
optimal solution accompanied with an improvement in the
convergence speed as the group size increases. In contrast to

the probability factor of 1.0, the probability factor of 0.5 shows
a decrease in convergence speed as the group size changes
from 2 to 32 with the ability to find the exact global optimum
in all cases.

2 4 8 16 32
0.5

1

1.5

2

2.5

3

3.5

x 10
4

Group Size

C
on

ve
rg

en
ce

 S
pe

ed
(N

o.
 F

un
ct

io
n

E
va

lu
at

io
ns

)

5-modal Problem

SGA
Hybrid (PF=1.0)
Hybrid (PF=0.5)
Stand alone (PF=0.5)

Fig. 6. Convergence Speed of the Proposed Algorithm as a Stand Alone
Algorithm.

500 1000 1500 2000 2500
1

2

3

4

5

No. Function Evaluations

P
o

p
u

la
tio

n
's

 A
ve

ra
g

e
 F

itn
e

ss

Group Size 2 & Probaility Factor=1.0

2000 4000 6000 8000
1

2

3

4

5
Group Size 2 & Probaility Factor=0.5

No. Function Evaluations

P
o

p
u

la
tio

n
's

 A
ve

ra
g

e
 F

itn
e

ss

500 1000 1500 2000 2500
1

2

3

4

5
Group Size 32 & Probaility Factor=1.0

No. Function Evaluations

P
o

p
u

la
tio

n
's

 A
ve

ra
g

e
 F

itn
e

ss

2000 4000 6000 8000
1

2

3

4

5
Group Size 32 & Probaility Factor=0.5

No. Function Evaluations

P
o

p
u

la
tio

n
's

 A
ve

ra
g

e
 F

itn
e

ss

Fig. 7. Comparing the Effect of the Probability Factor and the Group Size on
Algorithm Performance.

Fig. 8 compares the population convergence speed of the
algorithm as a standalone optimization technique with that of
the pure genetic algorithm and a hybridization of them. This
graph compares an algorithm with a probability factor of 1.0
and a group size of 32. The graphs show that a hybridization
can get the best out of the two search methods. It produced an
algorithm that was able to find the global optimum in all the
experiments, in contrast to the standalone algorithm which can
miss that optimum some times. The hybrid was able to employ
the ability of the pure genetic algorithm to reach the global
optimum in all experiments and utilize the fast convergence
speed of the secondary method to produce an effective and
efficient algorithm.

347

1 2 3 4 5 6

x 10
4

1

2

3

4

5
Local Search

1 2 3 4 5 6

x 10
4

1

2

3

4

5

P
op

ul
at

io
n'

s
A

ve
ra

ge
 F

itn
es

s SGA

1 2 3 4 5 6

x 10
4

1

2

3

4

5
Hybrid

No. of Function Evakluations

Fig. 8. Comparing the Convergence of the Proposed Algorithm with the Pure
Genetic Algorithm and the Hybrid on 5-modal Problem.

V. CONCLUSION AND FUTURE WORK
The proposed algorithm shows good performance as a

standalone search method on problems with a uniformly scaled
fitness function. However, the standalone algorithm and the
pure genetic algorithm are outperformed by their hybrid on
problems with non-uniformly scaled fitness function.

The basic assumption of the proposed algorithm, which
states that each gene contributes uniformly to the fitness of the
solution, can explain the good performance of the algorithm, as
a standalone optimization technique, on the multimodal
generator problem compared to the poor performance on the
other two problems.

However, the encouraging performance of the algorithm as
a secondary search method, even when applied to non-
uniformly scaled fitness functions, can be explained as follows.
The genes of non-uniformly scaled fitness functions converge
at different rates [15]. The most important genes converge
towards their optimal value before the less important genes.
The proposed algorithm concentrates on the differences in the
population structure and fitness to modify the non-identical
genes. The algorithm does not modify the identical genes.
These non-identical genes in the non-uniformly scaled
problems are the genes that converge at a slower rate than the
identical genes that have been converged to their optimal value
as a result of the genetic search. The algorithm uses a sample of
the genetic population to determine the genes that have not
been converged yet. This sample involves the initial solution
and a selected group of solutions. The accuracy of the
algorithm in determining the converged genes increases as the
sample size increases. This ability of determining the already
converged genes in the population reduces the possibility of
disrupting the genetic schema processing. This, in turn, can
reduce the probability of facing premature convergence
problems and can accelerate the search towards the global
optimum. The good performance of the hybrid that uses large
group sizes can thereby be explained.

One of the possible ways of improving the performance of
the proposed algorithm is to use a variable group size for each
iteration. It is also possible to set the values of the probability
factor depending on the group size used. This can be done in
accordance with the findings of the experiments of this paper.
These experiments show that high probability factors are
suitable for large groups and low factors are more suitable to
small groups. The probability factor can be made adaptable to
the group size using this approach.

REFERENCES
[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison-Wesley, 1989.
[2] D. Beasley, D. R. Bull and R. R. Martin, "An Overview Of Genetic

Algorithms : Part 1, Fundamentals," University Computing, vol. 2, no.
15, pp. 58-69, 1993.

[3] A. Hopgood, Intelligent Systems for Engineers and Scientists, 3rd ed.,
CRC Press, 2012.

[4] T. A. El-Mihoub, A. Hopgood, L. Nolle and A. Battersby, "Hybrid
Algorithms : A review," Engineering Letters, vol. 3, no. 2, pp. 12-45,
2006.

[5] A. Boriskin, M. Balaban, O. Y. Galan and R. Sauleau, "Efficient
approach for fast synthesis of phased arrays with the aid of a hybrid
genetic algorithm and a smart feed representation," in Phased Array
Systems and Technology (ARRAY), 2010 IEEE International
Symposium on, 2010.

[6] D. Whitley, V. S. Gordon and K. Mathias, "Lamarckian evolution, the
Baldwin effect and function optimization," in Parallel Problem Solving
from Nature—PPSN III, Springer Berlin Heidelberg, 1994, pp. 5-15.

[7] L. D. Whitley, K. Mathias, C. Stock and T. Kusuma, "Staged Hybrid
Genetic Search For Seismic Data Imaging," in Evolutionary
Computation, 1994. IEEE World Congress on Computational
Intelligence., Proceedings of the First IEEE Conference on, 1994.

[8] C. R. Houck, J. A. Joines, M. G. Kay and J. R. Wilson, "Empirical
Investigation Of The Benefits Of Partial Lamarckianism," Evolutionary
Computation, vol. 5, no. 1, pp. 31-60, 1997.

[9] M. D. Pelikan and D. E. Goldberg, "A Survey of Optimization by
Building and Using Probabilistic Models," IlliGA, 1999.

[10] K. Han and J. H. Kim, "Quantum-Inspired Evolutionary Algorithm For
A Class Of Combinatorial Optimization," IEEE Transactions On
Evolutionary Computation, vol. 6, no. 6, pp. 580- 593, 2002.

[11] A. Eiben, R. Hinterding and Z. Michalewicz, "Parameter Control In
Evolutionary Algorithms," Evolutionary Computation, IEEE
Transactions on, vol. 3, no. 2, pp. 124-141, 1999.

[12] F. G. Lobo and D. E. Goldberg, "Decision Making in a Hybrid Genetic
Algorithm," in IEEE International Conference on evolutionary
Computation, Piscataway, 1997.

[13] T. A. El-Mihoub, A. Hopgood, L. Nolle and A. Battersby, "Self-adaptive
Baldwinian search in hybrid genetic algorithms," in 9th Fuzzy Days
International Conference on Computational Intelligence, Dortmond,
2006..

[14] K. A. De Jong, M. A. Potter and W. M. Spears, "Using Problem
Generators to Explore the Effects of Epistasis," in the Seventh
International Conference on Genetic Algorithms, East Lansing, 1997.

[15] D. Thierens, D. E. Goldberg and A. G. Pereira, "Domino Convergence,
Drift, And The Temporal-Salience Structure Of Problems," in IEEE
International Conference on Evolutionary Computation, Anchorage,
1998.

[16] H. Mühlenbein, M. Schomisch and J. Born, "The Parallel Genetic
Algorithm as Function Optimizer," Parallel Computing, vol. 17, pp. 619-
632, 1991.

[17] T. A. El-Mihoub, A. Hopgood, l. Nolle and A. Battasbry, "Performance
of hybrid genetic algorithms incorporating local search," in 18th
European Simulation Multiconference, Magdeburg, 2004.

348

